scholarly journals Distribution of Nereilinum murmanicum (Annelida, Siboglinidae) in the Barents Sea in the Context of Its Oil and Gas Potential

2021 ◽  
Vol 9 (12) ◽  
pp. 1339
Author(s):  
Nadezda Karaseva ◽  
Madina Kanafina ◽  
Mikhail Gantsevich ◽  
Nadezhda Rimskaya-Korsakova ◽  
Denis Zakharov ◽  
...  

Frenulate siboglinids are a characteristic component of communities living in various reducing environments, including sites with hydrocarbon seeps. High concentrations of hydrocarbons in the sediments of the Arctic basin seas, including the Barents Sea, suggest the presence of a rich siboglinid fauna there. This reflects the fact that microbiological oxidation of methane occurs under reducing conditions, generating high concentrations of hydrogen sulfide in the sediment. This hydrogen sulfide acts as an energy source for the sulfide-oxidizing symbionts of siboglinids. Here we report on the findings of the frenulate siboglinid species Nereilinum murmanicum made between 1993 and 2020 in the Barents Sea. These data significantly expand the range of this species and yield new information on its habitat distribution. The depth range of N. murmanicum was 75–375 m. The species was most abundant from 200 to 350 m and was associated with temperatures below 3 °C and salinities from 34.42 to 35.07. Most of the findings (43 locations or 74%) fall on areas highly promising for oil and gas production. Twenty-eight locations (48%) are associated with areas of known oil deposits, 22 locations (37%) with explored areas of gas hydrate deposits. N. murmanicum was also found near the largest gas fields in the Barents Sea, namely Shtokman, Ludlovskoye and Ledovoye.

Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


2019 ◽  
Vol 59 (1) ◽  
pp. 112-122 ◽  
Author(s):  
S. B. Krasheninnikova ◽  
M. A. Krasheninnikova

Based on the spectral analysis of a number of estimates of the ice extent of the Barents Sea, obtained from instrumental observational data for 1900–2014, and for the selected CMIP5 project models (MPI-ESM-LR, MPI-ESMMR and GFDL-CM3) for 1900–2005, a typical period of ~60‑year inter-annual variability associated with the Atlantic multidecadal oscillation (AMO) in conditions of a general significant decrease in the ice extent of the Barents Sea, which, according to observations and model calculations, was 20 and 15%, respectively, which confirms global warming. The maximum contribution to the total dispersion of temperature, ice cover of the Barents Sea, AMO, introduces variability with periods of more than 20 years and trends that are 47, 20, 51% and 33, 57, 30%, respectively. On the basis of the cross correlation analysis,  significant links have been established between the ice extent of the Barents Sea, AMO, and North Atlantic Oscillation (NAO) for the  period 1900–2014. A significant negative connection (R = −0.8) of ice cover and Atlantic multi-decadal oscillations was revealed at periods of more than 20 years with a shift of 1–2 years; NAO and ice cover (R = −0.6) with a shift of 1–2 years for periods of 10–20 years; AMO and NAO (R = −0.4 ÷ −0.5) with a 3‑year shift with AMO leading at 3–4, 6–8 and more than 20 years. The periods of the ice cover growth are specified: 1950–1980 and the reduction of the ice cover: the 1920–1950 and the 1980–2010 in the Barents Sea. Intensification of the transfer of warm waters from the North Atlantic to the Arctic basin, under the atmospheric influence caused by the NAO, accompanied by the growth of AMO leads to an increase in temperature, salinity and a decrease of ice cover in the Barents Sea. During periods of ice cover growth, opposite tendencies appear. The decrease in the ice cover area of the entire Northern Hemisphere by 1.5 × 106 km2 since the mid-1980s. to the beginning of the 2010, identified in the present work on NOAA satellite data, confirms the results obtained on the change in ice extent in the Barents Sea.


2021 ◽  
Vol 73 (10) ◽  
pp. 17-22
Author(s):  
Pat Davis Szymczak

It wasn’t too long ago that Arctic oil and gas exploration enjoyed celebrity status as the industry’s last frontier, chock full of gigantic unexplored hydrocarbon deposits just waiting to be developed. Fast forward and less than a decade later, the same climate change that made Arctic oil and gas more accessible has caused an about-face as governments and the world’s supranational energy companies rebrand and target control of greenhouse gases (GHG) to achieve carbon neutrality by 2050. Among countries with Arctic coastlines, Canada has focused its hydrocarbon production on its oil sands which sit well below the Arctic Circle; Greenland has decided to not issue any new offshore exploration licenses (https://jpt.spe.org/greenland-says-no-to-oil-but-yes-to-mining-metals-for-evs), and while Norway is offering licenses in its “High North,” the country can’t find many takers. The Norwegian Petroleum Directorate (NPD) reported that while 26 companies applied for licenses in 2013, this year’s bid round attracted only seven participants. Norway is Europe’s largest oil producer after Russia with half of its recoverable resources still undeveloped and most of that found in the Barents Sea where the NPD says only one oil field and one gas field are producing. That leaves Russia and the US—geopolitical rivals which are each blessed with large Arctic reserves and the infrastructure to develop those riches—but whose oil and gas industries play different roles in each nation’s economy and domestic political intrigues. Russia sees its Arctic reserves, particularly gas reserves, as vital to its national security, considering that oil and gas accounts for 60% of Russian exports and from 15 to 20% of the country’s gross domestic product (GDP), according to Russia’s Skolkovo Energy Centre. With navigation now possible year­round along the Northern Sea Route, Russia’s LNG champion and its largest independent gas producer, Novatek, is moving forward with exploration to expand its resource base and build infrastructure to ship product east to Asia and west to Europe. https://jpt.spe.org/russian­lng­aims­high­leveraging­big­reserves­and­logistical­advantages As a result, Russia’s state­owned majors—Rosneft, Gazprom, and Gazprom Neft—are lining up behind their IOC colleague as new investment in Arctic exploration and development is encouraged and rewarded by the Kremlin. In contrast, the American Petroleum Institute reports that the US oil and gas industry contributes 8% to US GDP, a statistic that enables the US to have a more diverse discussion than Russia about the role that oil and gas may play in any future energy mix. That is unless you happen to be from the state of Alaska where US Arctic oil and gas is synonymous with Alaskan oil and gas, and where the US Geological Survey estimates 27% of global unex­plored oil reserves may lie. Though Alaska is responsible for only 4% of US oil and gas production, those revenues covered two-thirds of Alaska’s state budget in 2020 despite the state’s decline in crude production in 28 of the past 32 years since it peaked at 2 million B/D in 1988, according to the US Energy Information Administration (EIA).


Polar Record ◽  
1965 ◽  
Vol 12 (81) ◽  
pp. 703-708 ◽  
Author(s):  
Jenö Nagy

Svalbard comprises the islands between longs 10 to 35° E and between lats 74 to 81° N. The largest of these islands is Vestpitsbergen, followed by Nordaustlandet, Edgeøya, Barentsøya and Bjørnøya. The archipelago lies in the northwestern part of the Barents-Kara shelf. To south and east the continental shelf is covered by the shallow waters of the Barents Sea, whilst to the north and west the shelf falls away rapidly into the Arctic Basin and the Greenland Sea.


2016 ◽  
Author(s):  
Harry L. Stern ◽  
Kristin L. Laidre

Abstract. Abstract. Nineteen distinct subpopulations of polar bears (Ursus maritimus) are found throughout the Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology – the cycle of biological events – is tied to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum, or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979–2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from −3 to −9 days decade−1 in spring, and from +3 to +9 days decade−1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days), and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of −7 to −19 days decade−1, with larger trends in the Barents Sea and central Arctic Basin. The June–October sea-ice concentration is declining in all regions at rates ranging from −1 to −9 percent decade−1. These sea-ice metrics (or indicators of change in marine mammal habitat) were designed to be useful for management agencies. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.


2021 ◽  
Vol 9 (11) ◽  
pp. 2362
Author(s):  
Shahjahon Begmatov ◽  
Alexander S. Savvichev ◽  
Vitaly V. Kadnikov ◽  
Alexey V. Beletsky ◽  
Igor I. Rusanov ◽  
...  

A combination of physicochemical and radiotracer analysis, high-throughput sequencing of the 16S rRNA, and particulate methane monooxygenase subunit A (pmoA) genes was used to link a microbial community profile with methane, sulfur, and nitrogen cycling processes. The objects of study were surface sediments sampled at five stations in the northern part of the Barents Sea. The methane content in the upper layers (0–5 cm) ranged from 0.2 to 2.4 µM and increased with depth (16–19 cm) to 9.5 µM. The rate of methane oxidation in the oxic upper layers varied from 2 to 23 nmol CH4 L−1 day−1 and decreased to 0.3 nmol L−1 day−1 in the anoxic zone at a depth of 16–19 cm. Sulfate reduction rates were much higher, from 0.3 to 2.8 µmol L −1 day −1. In the surface sediments, ammonia-oxidizing Nitrosopumilaceae were abundant; the subsequent oxidation of nitrite to nitrate can be carried out by Nitrospira sp. Aerobic methane oxidation could be performed by uncultured deep-sea cluster 3 of gamma-proteobacterial methanotrophs. Undetectable low levels of methanogenesis were consistent with a near complete absence of methanogens. Anaerobic methane oxidation in the deeper sediments was likely performed by ANME-2a-2b and ANME-2c archaea in consortium with sulfate-reducing Desulfobacterota. Sulfide can be oxidized by nitrate-reducing Sulfurovum sp. Thus, the sulfur cycle was linked with the anaerobic oxidation of methane and the nitrogen cycle, which included the oxidation of ammonium to nitrate in the oxic zone and denitrification coupled to the oxidation of sulfide in the deeper sediments. Methane concentrations and rates of microbial biogeochemical processes in sediments in the northern part of the Barents Sea were noticeably higher than in oligotrophic areas of the Arctic Ocean, indicating that an increase in methane concentration significantly activates microbial processes.


2020 ◽  
Author(s):  
Robyn E. Tuerena ◽  
Joanne Hopkins ◽  
Raja S. Ganeshram ◽  
Louisa Norman ◽  
Camille de la Vega ◽  
...  

Abstract. While the entire Arctic Ocean is warming rapidly, the Barents Sea in particular is experiencing significant warming and sea ice retreat. An increase in ocean heat transport from the Atlantic is causing the Barents Sea to be transformed from a cold, salinity stratified system into a warmer, less-stratified Atlantic-dominated climate regime. Productivity in the Barents Sea shelf is fuelled by waters of Atlantic origin (AW), which are ultimately exported to the Arctic basin. The consequences of this current regime shift on the nutrient characteristics of the Barents Sea are poorly defined. Here we use the stable isotopic ratios of nitrate (δ15N-NO3, δ18O-NO3), to determine the uptake and modification of AW nutrients in the Barents Sea. In summer months, phytoplankton consume nitrate, surface waters become nitrate depleted, and particulate nitrogen (δ15N-PN) reflects the AW nitrate source. The ammonification of organic matter in shallow sediments resupplies N to the water column through the season. Low δ18O-NO3 in the northern Barents Sea reveals that the nitrate in lower temperature Arctic Waters is > 80 % regenerated through seasonal nitrification. During on shelf nutrient uptake and regeneration, there is no significant change to δ15N-NO3 or N*, suggesting benthic denitrification does not impart an isotopic imprint on pelagic nitrate. Our results demonstrate that the Barents Sea is distinct from other Arctic shelves, where coupled partial nitrification-denitrification enriches δ15N-NO3 and decreases N*. Our results suggest that any current or future changes to productivity on the Barents Sea shelf are unlikely to alter the magnitude or isotopic signature of nutrient supply exported to the central Arctic basin. However, we suggest that the AW nutrient source ultimately determines Barents Sea productivity and changes to this supply may alter Barents Sea primary production and subsequent nutrient supply to the central Arctic Ocean.


2020 ◽  
Vol 5 (2) ◽  
pp. 19-37
Author(s):  
D. V. Zakharov ◽  
L. L. Jørgensen ◽  
I. E. Manushin ◽  
N. A. Strelkova

This long-term observation of the faunal composition within the Barents Sea provides a benchmark for monitoring community changes caused by oceanographic variability, fishery activities, and crab predators (Chionoecetes opilio, Paralithodes camtschaticus), whose populations have been rapidly growing and spreading in recent years. In the Arctic systems, megabenthic communities comprise a significant part of benthic biomass and play an important role in carbon cycling on continental shelves. The gradual accumulation of knowledge on megabenthos may make it possible to assess their role in the ecosystem and ultimately contribute to a more rational management of the Barents Sea resources. This article represents an important series of long-term megabenthic observations in the Barents Sea. The main goal of our research is to identify spatial patterns and temporal trends in the megabenthic part of communities, including changes in the biomass and production values. As a part of the joint Norwegian-Russian ecosystem surveys, benthic experts have been identifying the invertebrates (megafauna) collected by bottom trawls during annual assessments of commercial stocks, such as Atlantic cod (Gadus morhua) and northern shrimp (Pandalus borealis). The sampling equipment used was a Campelen 1800 bottom trawl, rigged with rockhopper ground gear and towed on double warps, and standardized to a fixed sampling effort (equivalent to a towing distance of 0.75 nautical miles (nm), or 1.4 km). The processing of the biological material was conducted in accordance with standardized procedures, following the retrieval of each trawl. This work represents data from 5016 stations from 2005 to 2017, with a total sampled biomass of 238.4 tons and 14.9 million individual organisms. In total, 694 megabenthic species (1058 taxa) have been recorded, with the greatest diversity observed in the depth range of 100–400 m, while the largest mean catches were taken between depths of 600–800 m. The biomass (B) and production (P) values of the benthic megafauna were approximately stable during the 9 years of investigation, although there was a decreasing trend after 2014. The annual production P/B ratio of megabenthos was calculated to be at 0.3. The distribution, contribution to production, and gross biomass values of the megabenthos had been underestimated in the previous studies of zoobenthos. The results from this research show that, in the current warm period, the majority of the Barents Sea is in an intermediate state between the Arctic and boreal regions due to the wide distribution of boreal species toward the north. The dynamics of the mean biogeographical index (the border between areas of the dominance of boreal and Arctic species) within the central-southern part of the Barents Sea suggests that a large part of the area can be characterized as predominantly boreal intermediate since 2013.


2021 ◽  
Vol 18 (2) ◽  
pp. 637-653
Author(s):  
Robyn E. Tuerena ◽  
Joanne Hopkins ◽  
Raja S. Ganeshram ◽  
Louisa Norman ◽  
Camille de la Vega ◽  
...  

Abstract. While the entire Arctic Ocean is warming rapidly, the Barents Sea in particular is experiencing significant warming and sea ice retreat. An increase in ocean heat transport from the Atlantic is causing the Barents Sea to be transformed from a cold, salinity-stratified system into a warmer, less-stratified Atlantic-dominated climate regime. Productivity in the Barents Sea shelf is fuelled by waters of Atlantic origin (AW) which are ultimately exported to the Arctic Basin. The consequences of this current regime shift on the nutrient characteristics of the Barents Sea are poorly defined. Here we use the stable isotopic ratios of nitrate (δ15N-NO3, δ18O-NO3) to determine the uptake and modification of AW nutrients in the Barents Sea. In summer months, phytoplankton consume nitrate, surface waters become nitrate depleted, and particulate nitrogen (δ15N-PN) reflects the AW nitrate source. The ammonification of organic matter in shallow sediments resupplies N to the water column and replenishes the nitrate inventory for the following season. Low δ18O-NO3 in the northern Barents Sea reveals that the nitrate in lower-temperature Arctic waters is > 80 % regenerated through seasonal nitrification. During on-shelf nutrient uptake and regeneration, there is no significant change to δ15N-NO3 or N*, suggesting that benthic denitrification does not impart an isotopic imprint on pelagic nitrate. Our results demonstrate that the Barents Sea is distinct from other Arctic shelves where benthic denitrification enriches δ15N-NO3 and decreases N*. As nutrients are efficiently recycled in the Barents Sea and there is no significant loss of N through benthic denitrification, changes to Barents Sea productivity are unlikely to alter N availability on shelf or the magnitude of N advected to the central Arctic Basin. However, we suggest that the AW nutrient source ultimately determines Barents Sea productivity and that changes to AW delivery have the potential to alter Barents Sea primary production and subsequent nutrient supply to the central Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document