scholarly journals Investment Evaluation and Partnership Selection Model in the Offshore Wind Power Underwater Foundations Industry

2021 ◽  
Vol 9 (12) ◽  
pp. 1371
Author(s):  
Min-Yuan Cheng ◽  
Yung-Fu Wu

With a plan to achieve a target of 5.7 GW offshore wind power capacity in 2025, Taiwan anticipates building a 36-billion USD industry, which makes Taiwan a center of attention in the global marketplace of civil engineering construction. Aimed at Taiwan’s underwater foundations industries, this study is the first to develop an investment evaluation model (IEM) by applying FPR to obtain risk factor weights and calculate the overall investment risk value with a numerical scoring method. In a context where no precedent exists for reference, this study provides auxiliary and supportive tools to help builders to make the decision, based on objective indicators, whether to undertake an investment. To date, no research has been conducted to introduce a reasonable mathematical model that discusses the issue of partner selection in the field of offshore wind power. This study is the first paper to construct a SWARA-FTOPSIS partner selection model, which enables underwater foundations builders to take specific Taiwanese characteristics into account in their selection of the best partners to meet transportation, construction, and installation requirements. Finally, the study uses the case of the Taipower Offshore Wind Power Project (2nd phase) to verify the feasibility of this model.

Wind Energy ◽  
2021 ◽  
Author(s):  
Yi‐Hui Wang ◽  
Ryan K. Walter ◽  
Crow White ◽  
Matthew D. Kehrli ◽  
Benjamin Ruttenberg

2021 ◽  
pp. 014459872199226
Author(s):  
Yu-chi Tian ◽  
Lei kou ◽  
Yun-dong Han ◽  
Xiaodong Yang ◽  
Ting-ting Hou ◽  
...  

With resource crisis and environmental crisis increasingly grim, many countries turn the focus to pollution-free and renewable wind energy resources, which are mainly used for offshore wind power generation, seawater desalination and heating, etc., on the premise that the characteristics of resources are fully grasped. In this study, the evaluation of offshore wind energy in offshore waters in China, as well as the advantages and disadvantages of existing studies were overviewed from four aspects: the spatial-temporal characteristics of wind energy, wind energy classification, the short-term forecast of wind energy and the long-term projection of wind energy, according to the research content and the future considerations about wind energy evaluation (evaluation of wind energy on islands and reefs, the impact of wind energy development on human health) were envisaged, in the hope of providing a scientific basis for the site selection and business operation ‘or military applications’ here (after business operation), etc. of wind energy development, ‘aritime navigation against environmental construction,’ here and also contributing to the sustainable development and health of human beings.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2058
Author(s):  
Zheren Zhang ◽  
Yingjie Tang ◽  
Zheng Xu

Offshore wind power has great development potential, for which the key factors are reliable and economical wind farms and integration systems. This paper proposes a medium-frequency wind farm and MMC-HVDC integration system. In the proposed scheme, the operating frequency of the offshore wind farm and its power collection system is increased from the conventional 50/60 Hz rate to the medium-frequency range, i.e., 100–400 Hz; the offshore wind power is transmitted to the onshore grid via the modular multilevel converter-based high-voltage direct current transmission (MMC-HVDC). First, this paper explains the principles of the proposed scheme in terms of the system topology and control strategy aspects. Then, the impacts of increasing the offshore system operating frequency on the main parameters of the offshore station are discussed. As the frequency increases, it is shown that the actual value of the electrical equipment, such as the transformers, the arm inductors, and the SM capacitors of the rectifier MMC, can be reduced, which means smaller platforms are required for the step-up transformer station and the converter station. Then, the system operation characteristics are analyzed, with the results showing that the power losses in the system increase slightly with the increase of the offshore AC system frequency. Based on time domain simulation results from power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC), it is noted that the dynamic behavior of the system is not significantly affected with the increase of the offshore AC system frequency in most scenarios. In this way, the technical feasibility of the proposed offshore platform miniaturization technology is proven.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3759
Author(s):  
Kai Huang ◽  
Lie Xu ◽  
Guangchen Liu

A diode rectifier-modular multilevel converter AC/DC hub (DR-MMC Hub) is proposed to integrate offshore wind power to the onshore DC network and offshore production platforms (e.g., oil/gas and hydrogen production plants) with different DC voltage levels. The DR and MMCs are connected in parallel at the offshore AC collection network to integrate offshore wind power, and in series at the DC terminals of the offshore production platform and the onshore DC network. Compared with conventional parallel-connected DR-MMC HVDC systems, the proposed DR-MMC hub reduces the required MMC converter rating, leading to lower investment cost and power loss. System control of the DR-MMC AC/DC hub is designed based on the operation requirements of the offshore production platform, considering different control modes (power control or DC voltage control). System behaviors and requirements during AC and DC faults are investigated, and hybrid MMCs with half-bridge and full-bridge sub-modules (HBSMs and FBSMs) are used for safe operation during DC faults. Simulation results based on PSCAD/EMTDC validate the operation of the DR-MMC hub.


Sign in / Sign up

Export Citation Format

Share Document