scholarly journals Contributions of the Biofilm Matrix to Candida Pathogenesis

2020 ◽  
Vol 6 (1) ◽  
pp. 21 ◽  
Author(s):  
Jeniel E. Nett ◽  
David R. Andes

In healthcare settings, Candida spp. cause invasive disease with high mortality. The overwhelming majority of cases are associated with the use of critically-needed medical devices, such as vascular catheters. On the surface of these indwelling materials, Candida forms resilient, adherent biofilm communities. A hallmark characteristic of this process is the production of an extracellular matrix, which promotes fungal adhesion and provides protection from external threats. In this review, we highlight the medical relevance of device-associated Candida biofilms and draw attention to the process of Candida-biofilm-matrix production. We provide an update on the current understanding of how biofilm extracellular matrix contributes to pathogenicity, particularly through its roles in the promoting antifungal drug tolerance and immune evasion.

2021 ◽  
pp. 194589242199814
Author(s):  
Soo-Hyung Lee ◽  
Jae Hoon Cho ◽  
Joo-Hoo Park ◽  
Jung-Sun Cho ◽  
Heung-Man Lee

Background Chronic rhinosinusitis is involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. High mobility group box chromosomal protein 1 (HMGB-1) is known to stimulate lung fibroblast to produce ECM in lung fibrosis. The aim of this study was to investigate whether HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblasts and to identify the signal pathway. Methods Human nasal fibroblasts were cultured. After stimulation with HMGB-1, expressions of α-smooth muscle actin (α-SMA) and fibronectin were determined by real-time PCR and western blot. Total collagen was measured by Sircol assay. To investigate signal pathway, various signal inhibitors and RAGE siRNA were used. Results HMGB-1 increased α-SMA and fibronectin in mRNA and protein levels. It also increased collagen production. RAGE siRNA inhibited HMGB-1-induced α-SMA and fibronectin, and production of collagen. Furthermore, the inhibitors of RAGE downstream molecules such as p38, JNK and AP-1 also blocked the HMGB-1-induced effects. Conclusions HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblast, which is mediated by RAGE, p38, JNK and AP-1 signal pathway. These results suggest that HMGB-1 may play an important role in tissue remodeling during chronic rhinosinusitis progression.


Author(s):  
Ulrich A. Stock ◽  
Dmitri Wiederschain ◽  
Susan M. Kilroy ◽  
Dominique Shum-Tim ◽  
Philip N. Khalil ◽  
...  

2009 ◽  
Vol 337 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Cheng-Juan Qu ◽  
Teemu Pöytäkangas ◽  
Marjo Jauhiainen ◽  
Seppo Auriola ◽  
Mikko J. Lammi

2007 ◽  
Vol 26 (2) ◽  
pp. 106-114 ◽  
Author(s):  
Robert F. Klees ◽  
Roman M. Salasznyk ◽  
Scott Vandenberg ◽  
Kristin Bennett ◽  
George E. Plopper

2010 ◽  
Vol 111 (3) ◽  
pp. 585-596 ◽  
Author(s):  
Christina K. Chan ◽  
Marsha W. Rolle ◽  
Susan Potter-Perigo ◽  
Kathleen R. Braun ◽  
Benjamin P. Van Biber ◽  
...  

Gut ◽  
2021 ◽  
pp. gutjnl-2021-325065
Author(s):  
Chen-Ting Hung ◽  
Tung-Hung Su ◽  
Yen-Ting Chen ◽  
Yueh-Feng Wu ◽  
You-Tzung Chen ◽  
...  

Background and objectivesLiver fibrosis (LF) occurs following chronic liver injuries. Currently, there is no effective therapy for LF. Recently, we identified thioredoxin domain containing 5 (TXNDC5), an ER protein disulfide isomerase (PDI), as a critical mediator of cardiac and lung fibrosis. We aimed to determine if TXNDC5 also contributes to LF and its potential as a therapeutic target for LF.DesignHistological and transcriptome analyses on human cirrhotic livers were performed. Col1a1-GFPTg, Alb-Cre;Rosa26-tdTomato and Tie2-Cre/ERT2;Rosa26-tdTomato mice were used to determine the cell type(s) where TXNDC5 was induced following liver injury. In vitro investigations were conducted in human hepatic stellate cells (HSCs). Col1a2-Cre/ERT2;Txndc5fl/fl (Txndc5cKO) and Alb-Cre;Txndc5fl/fl (Txndc5Hep-cKO) mice were generated to delete TXNDC5 in HSCs and hepatocytes, respectively. Carbon tetrachloride treatment and bile duct ligation surgery were employed to induce liver injury/fibrosis in mice. The extent of LF was quantified using histological, imaging and biochemical analyses.ResultsTXNDC5 was upregulated markedly in human and mouse fibrotic livers, particularly in activated HSC at the fibrotic foci. TXNDC5 was induced by transforming growth factor β1 (TGFβ1) in HSCs and it was both required and sufficient for the activation, proliferation, survival and extracellular matrix production of HSC. Mechanistically, TGFβ1 induces TXNDC5 expression through increased ER stress and ATF6-mediated transcriptional regulation. In addition, TXNDC5 promotes LF by redox-dependent JNK and signal transducer and activator of transcription 3 activation in HSCs through its PDI activity, activating HSCs and making them resistant to apoptosis. HSC-specific deletion of Txndc5 reverted established LF in mice.ConclusionsER protein TXNDC5 promotes LF through redox-dependent HSC activation, proliferation and excessive extracellular matrix production. Targeting TXNDC5, therefore, could be a potential novel therapeutic strategy to ameliorate LF.


Sign in / Sign up

Export Citation Format

Share Document