scholarly journals Effects of Flurochloridone Application on Rhizosphere Soil Fungal Community and Composition in Potato Growing Areas of the Qinghai-Tibet Plateau

2021 ◽  
Vol 7 (6) ◽  
pp. 420
Author(s):  
Wei Li ◽  
Shuo Shen ◽  
Hongyu Chen ◽  
Yang Zhang ◽  
Lei Deng ◽  
...  

The application of herbicides to arable land is still the most effective and accepted method to protect plants from weeds. Extensive use of chemicals in conventional agricultural practices has resulted in continuous and serious environmental pollution. Flurochloridone (FLC) is a monophenyl pyrrolidinone selective herbicide that is commonly used to inhibit weeds that occur during the growth of potatoes. In recent years, research on the toxicity of FLC has gradually increased. However, it is relatively rare to analyze the role of FLC by studying the composition of soil microorganisms. Therefore, we used NGS methods to identify the fungal community structure of the low content soil (LS) and high content soil (HS) samples in this study. Subsequently, we identified the fungal community and composition differences of these two group samples using the statistical analysis. Despite the variances of fungal community and composition across the different samples within the group, the fungal composition of the LS samples and the HS samples. LS samples were predominated by Ascomycota, while the HS samples were predominated by Mortierellomycota and Basidiomycota. The major species in the LS samples were Plectosphaerella cucumerina and Trichocladium asperum, whereas the dominant species in the HS samples were Epicoccum nigrum and Cladosporium chasmanthicola. These results suggested that the LS samples and the HS samples had different rhizosphere soil fungal community and composition changes resulting from implementation of FLC in potato growing areas.

Author(s):  
Suzanne Visser

The impact of severe soil disturbance on soil fungal community composition and function and how this relates to the resultant decomposition/mineralisation process is very poorly understood. Consequently, research was conducted to determine: (a) to what degree fungal community structure and potential function are altered in a sub-alpine coal mine spoil (Luscar, Alberta), and (b) how do alterations in the fungal community affect patterns of fungal colonisation and decomposition of plant residues deposited on recently mined soil.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 167 ◽  
Author(s):  
Mengmeng Zhang ◽  
Ning Wang ◽  
Jingyun Zhang ◽  
Yanbo Hu ◽  
Dunjiang Cai ◽  
...  

A better understanding of soil fungal communities is very useful in revealing the effects of an agroforestry system and would also help us to understand the fungi-mediated effects of agricultural practices on the processes of soil nutrient cycling and crop productivity. Compared to conventional monoculture farming, agroforestry systems have obvious advantages in improving land use efficiency and maintaining soil physicochemical properties, reducing losses of water, soil material, organic matter, and nutrients, as well as ensuring the stability of yields. In this study, we attempted to investigate the impact of a mulberry/alfalfa intercropping system on the soil physicochemical properties and the rhizosphere fungal characteristics (such as the diversity and structure of the fungal community), and to analyze possible correlations among the planting pattern, the soil physicochemical factors, and the fungal community structure. In the intercropping and monoculture systems, we determined the soil physicochemical properties using chemical analysis and the fungal community structure with MiSeq sequencing of the fungal ITS1 region. The results showed that intercropping significantly improved the soil physicochemical properties of alfalfa (total nitrogen, alkaline hydrolysable nitrogen, available potassium, and total carbon contents). Sequencing results showed that the dominant taxonomic groups were Ascomycota, Basidiomycota, and Mucoromycota. Intercropping increased the fungal richness of mulberry and alfalfa rhizosphere soils and improved the fungal diversity of mulberry. The diversity and structure of the fungal community were predominantly influenced by both the planting pattern and soil environmental factors (total nitrogen, total phosphate, and total carbon). Variance partitioning analysis showed that the planting pattern explained 25.9% of the variation of the fungal community structure, and soil environmental factors explained 63.1% of the variation. Planting patterns and soil physicochemical properties conjointly resulted in changes of the soil fungal community structure in proportion.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Jun Zhang ◽  
Jiangbao Xia ◽  
Xiaoshuang Song ◽  
...  

In this study, pot experiments were conducted on the seedlings of Pinus sylvestris var. mongolica to study the influence of Trichoderma (Trichoderma harzianum E15) and Ectomycorrhizal fungi (Suillus luteus N94) on the growth of these seedlings. In particular, the effects of these fungi on the fungal community structure in the rhizosphere soil of the seedlings were investigated. Inoculation with Trichoderma harzianum E15 and Suillus luteus N94 significantly (P < 0.05) promoted the growth of the Pinus sylvestris seedlings. The non-metric multidimensional scaling (NMDS) results indicated a significant difference (P < 0.05) between the fungal community structures in the rhizosphere soil of the annual and biennial seedlings. In the rhizosphere soil of annual seedlings, the main fungi were Ascomycota, Basidiomycota, Zygomycota. Ascomycota, Basidiomycota, Mortierellomycota, and p-unclassified-k-Fungi were the main fungi in the rhizosphere soil of biennial seedlings. The dominant genus in the rhizosphere soil and a key factor promoting the growth of the annual and the biennial seedlings was Trichoderma, Suillus, respectively. Both of them were negatively correlated with the relative abundance of microbial flora in the symbiotic environment. Trichoderma had a significant promoting effect on the conversion of total phosphorus, total nitrogen, ammonium nitrogen, nitrate nitrogen, and the organic matter in the rhizosphere soil of the seedlings, while Suillus significantly promoted the conversion of organic matter and total phosphorus.


Sign in / Sign up

Export Citation Format

Share Document