scholarly journals Personal Network Inference Unveils Heterogeneous Immune Response Patterns to Viral Infection in Children with Acute Wheezing

2021 ◽  
Vol 11 (12) ◽  
pp. 1293
Author(s):  
Laura A. Coleman ◽  
Siew-Kim Khoo ◽  
Kimberley Franks ◽  
Franciska Prastanti ◽  
Peter Le Souëf ◽  
...  

Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma are usually identified by cluster analysis of gene expression levels. This approach however is limited, since genes do not exist in isolation, but rather work together in networks. Here, we employed personal network inference to characterize exacerbation response patterns and unveil molecular phenotypes based on variations in network structure. We found that personal gene network patterns were dominated by two major network structures, consisting of interferon-response versus FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups, differing in the prevalence of atopy but not RV species. These network structures were also observed in an independent cohort of children with virus-induced asthma exacerbations sampled over a time course, where we showed that the FCER1G-associated networks were mainly observed at late time points (days four–six) during the acute illness. The ratio of interferon- and FCER1G-associated gene network responses was able to predict recurrence, with low interferon being associated with increased risk of readmission. These findings demonstrate the applicability of personal network inference for biomarker discovery and therapeutic target identification in the context of acute asthma which focuses on variations in network structure.

Author(s):  
Barbara Kronsteiner ◽  
Panjaporn Chaichana ◽  
Manutsanun Sumonwiriya ◽  
Kemajitra Jenjaroen ◽  
Fazle Rabbi Chowdhury ◽  
...  

2020 ◽  
pp. 49-57
Author(s):  
S. V. Orlova ◽  
E. A. Nikitina ◽  
L. I. Karushina ◽  
Yu. A. Pigaryova ◽  
O. E. Pronina

Vitamin A (retinol) is one of the key elements for regulating the immune response and controls the division and differentiation of epithelial cells of the mucous membranes of the bronchopulmonary system, gastrointestinal tract, urinary tract, eyes, etc. Its significance in the context of the COVID‑19 pandemic is difficult to overestimate. However, a number of studies conducted in the past have associated the additional intake of vitamin A with an increased risk of developing cancer, as a result of which vitamin A was practically excluded from therapeutic practice in developed countries. Our review highlights the role of vitamin A in maintaining human health and the latest data on its effect on the development mechanisms of somatic pathology.


2020 ◽  
Vol 26 (6) ◽  
pp. 613-618
Author(s):  
A. V. Altukhov ◽  
S. A. Tishchenko

The presented study reviews practically relevant research papers in the field of network structures, modern network business models and platforms.Aim. The study aims to elaborate and explain the concept of network structure and platform and to show the reasons for the progressiveness and potential of network organizational structure at the current stage of socio-economic and scientific development.Tasks. The authors highlight the main scientific ideas about network structures in business, including significant studies in this area; provide and explain the main terms and definitions and examine the key characteristics of network business structures; characterize “platforms” as an important concept for modern business and show the relationship between platforms and network structures.Methods. This study uses analysis of information and subsequent synthesis of new knowledge in the form of the authors’ conclusions and a wide range of relevant scientific publications of Russian and foreign authors, including original publications in English and French.Results. The history of network structures is briefly provided. Definitions and characteristics of such concepts as “network structure” and “platform” in relation to business are provided and explained by the authors.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Christian Hidalgo ◽  
Caroll Stoore ◽  
María Soledad Baquedano ◽  
Ismael Pereira ◽  
Carmen Franco ◽  
...  

AbstractCystic echinococcosis is a zoonotic disease caused by the metacestode of Echinococcus granulosus sensu lato. The disease is characterized by the development of cystic structures inside viscera of the intermediate host, mainly liver and lungs. These cysts are formed by three layers: germinal, laminated, and adventitial layer, the latter being the local host immune response. Metacestodes that develop protoscoleces, the infective stage to the definitive host, are termed fertile, whereas cysts that do not produce protoscoleces are termed non-fertile. Sheep usually harbor fertile cysts while cattle usually harbor non-fertile cysts. Adventitial layers with fibrotic resolution are associated to fertile cysts, whereas a granulomatous reaction is associated with non-fertile cysts. The aim of this study was to analyze cellular distribution in the adventitial layer of fertile and non-fertile E. granulosus sensu stricto cysts found in liver and lungs of cattle and sheep. A total of 418 cysts were analyzed, 203 from cattle (8 fertile and 195 non-fertile) and 215 from sheep (64 fertile and 151 non-fertile). Fertile cysts from cattle showed mixed patterns of response, with fibrotic resolution and presence of granulomatous response in direct contact with the laminated layer, while sheep fertile cysts always displayed fibrotic resolution next to the laminated layer. Cattle non-fertile cysts display a granulomatous reaction in direct contact with the laminated layer, whereas sheep non-fertile cysts display a granulomatous reaction, but in direct contact with the fibrotic resolution. This shows that cattle and sheep cystic echinococcosis cysts have distinct local immune response patterns, which are associated to metacestode fertility.


2013 ◽  
Vol 81 (6) ◽  
pp. 2070-2075 ◽  
Author(s):  
Nathan K. Archer ◽  
Janette M. Harro ◽  
Mark E. Shirtliff

ABSTRACTThe anterior nares of humans are the major reservoir forStaphylococcus aureuscolonization. Approximately 20% of the healthy human population is persistently and 80% is intermittently colonized withS. aureusin the nasal cavity. Previous studies have shown a strong causal connection betweenS. aureusnasal carriage and increased risk of nosocomial infection, as well as increased carriage due to immune dysfunction. However, the immune responses that permit persistence or mediate clearance ofS. aureuson the nasal mucosa are fundamentally undefined. In this study, we developed a carriage model in C57BL/6J mice and showed that clearance begins 14 days postinoculation. In contrast, SCID mice that have a deficient adaptive immune response are unable to eliminateS. aureuseven after 28 days postinoculation. Furthermore, decolonization was found to be T cell mediated but B cell independent by evaluating carriage clearance in T-cell receptor β/δ (TCR-β/δ) knockout (KO) and IgH-μ KO mice, respectively. Upregulation of the cytokines interleukin 1β (IL-1β), KC (also termed CXC ligand 1 [CXCL1]), and IL-17A occurred following inoculation with intranasalS. aureus. IL-17A production was crucial for clearance, since IL-17A-deficient mice were unable to effectively eliminateS. aureuscarriage. Subsequently, cell differential counts were evaluated from nasal lavage fluid obtained from wild-type and IL-17A-deficient colonized mice. These counts displayed IL-17A-dependent neutrophil migration. Antibody-mediated depletion of neutrophils in colonized mice caused reduced clearance compared to that in isotype-treated controls. Our data suggest that the Th17-associated immune response is required for nasal decolonization. This response is T cell dependent and mediated via IL-17A production and neutrophil influx. Th17-associated immune responses may be targeted for strategies to mitigate distal infections originating from persistentS. aureuscarriage in humans.


2021 ◽  
Author(s):  
Kaixian Yu ◽  
Zihan Cui ◽  
Xin Sui ◽  
Xing Qiu ◽  
Jinfeng Zhang

Abstract Bayesian networks (BNs) provide a probabilistic, graphical framework for modeling high-dimensional joint distributions with complex correlation structures. BNs have wide applications in many disciplines, including biology, social science, finance and biomedical science. Despite extensive studies in the past, network structure learning from data is still a challenging open question in BN research. In this study, we present a sequential Monte Carlo (SMC)-based three-stage approach, GRowth-based Approach with Staged Pruning (GRASP). A double filtering strategy was first used for discovering the overall skeleton of the target BN. To search for the optimal network structures we designed an adaptive SMC (adSMC) algorithm to increase the quality and diversity of sampled networks which were further improved by a third stage to reclaim edges missed in the skeleton discovery step. GRASP gave very satisfactory results when tested on benchmark networks. Finally, BN structure learning using multiple types of genomics data illustrates GRASP’s potential in discovering novel biological relationships in integrative genomic studies.


2020 ◽  
Vol 8 (8) ◽  
pp. 219-222
Author(s):  
N. S. Churkina ◽  
D. A. Stepanenko

The article is devoted to the study of the development of network structures, causes, forms and trends. The work highlights the directions of interaction of organizations that are part of the network structure, defines the principles of the network, formulates the principles of intra-network interactions. We determined the characteristics of marketing of various types of organizations and escribed the effects of network platforms. We made conclusions about the further direction of platform development and the change in the type of management of organizations as elements of network structures.


2020 ◽  
Author(s):  
Matthew Bailey ◽  
Mark Wilson

<div>The properties of biological networks, such as those found in the ocular lens capsule, are difficult to study without simplified models.</div><div>Model polymers are developed, inspired by "worm-like'' curve models, that are shown to spontaneously self assemble</div><div>to form networks similar to those observed experimentally in biological systems.</div><div>These highly simplified coarse-grained models allow the self assembly process to be studied on near-realistic time-scales.</div><div>Metrics are developed (using a polygon-based framework)</div><div>which are useful for describing simulated networks and can also be applied to images of real networks.</div><div>These metrics are used to show the range of control that the computational polymer model has over the networks, including the polygon structure and short range order.</div><div>The structure of the simulated networks are compared to previous simulation work and microscope images of real networks. </div><div>The network structure is shown to be a function of the interaction strengths, cooling rates and external pressure. </div><div>In addition, "pre-tangled'' network structures are introduced and shown to significantly influence the subsequent network structure.</div><div>The network structures obtained fit into a region of the network landscape effectively inaccessible to random</div><div>(entropically-driven) networks but which are occupied by experimentally-derived configurations.</div>


Sign in / Sign up

Export Citation Format

Share Document