scholarly journals Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 447
Author(s):  
Chin-Chiang Hsu ◽  
Heng Tsai ◽  
Wen-Shu Huang ◽  
Shiuh-Tsuen Huang

A well-dated soil chronosequence may allow exploration of the accumulation of soil carbon over time. There are multiple levels of river terraces on the Pakua tableland in Central Taiwan. Unlike many of the reddish or lateritic soils in Taiwan, these soils were recently dated, with absolute ages in the range of 19–400 kyr. This information allowed us to develop an ideal soil chronosequence, with time constraints, through which it is possible to explore soil organic carbon (SOC) storage and its changes over time. In this study, we attempted to establish an SOC time series, and to give an estimate of long-term accumulation of the SOC storage in the red soils of Taiwan. The data on these soils used in this study were taken from the soil profiles presented in our previous studies. Two additional soil profiles were sampled for those soils for which data were not available from the previous studies. The total carbon stock (TCS) for each soil profile was measured and assessed based on the depth categories of 0–30, 30–50, and 50–100 cm. Weighted carbon stock (WCS) measurements were further derived by the total thickness of the soil profile, for better comparison. The overall carbon stocks of the soils in the Pakua tableland were in the range of 2.8–3.2 Tg for TCS and WCS, respectively. In addition, the SOC tended to be highest in the surface soil horizons and decreased with the soil depth. The continuous pattern of the carbon content, in terms of its vertical distribution, was considered in terms of a negative exponential function, which showed that the SOC was highest in the shallowest soil layers and decreased rapidly with the soil depth. This trend was mitigated at a depth of 50–100 cm, which approached a fixed value, denoted as the carbon sequestration value (CSV), below a certain depth. We show here that the values of the CSV, as approximated by exponential fitting, are closely related to soil age. The CSV linearly decreases with age. These findings point to the potential of using carbon storage for chronometric applications.

Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Vinícius Augusto Morais ◽  
Carla Alessandra Santos ◽  
José Márcio Mello ◽  
Hassan Camil Dadid ◽  
Emanuel José Gomes Araújo ◽  
...  

ABSTRACT Forest ecosystems contribute significantly to store greenhouse gases. This paper aimed to investigate the spatial and vertical distribution of litter, roots, and soil carbon. We obtained biomass and carbon of compartments (litter, roots, and soil) in a vegetation from Cerrado biome, state of Minas Gerais, Brazil. The materials were collected in 7 0.5 m² sub-plots randomly allocated in the vegetation. Root and soil samples were taken from five soil layers across the 0-100 cm depth. Roots were classified into three diameter classes: fine (<5 mm), medium (5-10 mm), and coarse (>10 mm) roots. The carbon stock was mapped through geostatistical analysis. The results indicated averages of soil carbon stock of 208.5 Mg.ha-1 (94.6% of the total carbon), root carbon of 6.8 Mg.ha-1 (3.1%), and litter of 5 Mg.ha-1 (2.3%). The root carbon was majority stored in coarse roots (83%), followed by fine (10%), and medium roots (7%). The largest portion of fine roots concentrated in the 0-10 cm soil depth, whereas medium and coarse roots were majority in the 10-20 cm depth. The largest portion of soil (53%) and root (85%) carbon were stored in superficial soil layers (above 40 cm). As conclusion, the carbon spatial distribution follows a reasonable trend among the compartments. There is a vertical relation of which the deeper the soil layer, the lower the soil and root carbon stock. Excepting the shallowest layer, coarse roots held the largest portion of carbon across the evaluated soil layers.


2021 ◽  
Author(s):  
Moritz Mainka ◽  
Laura Summerauer ◽  
Daniel Wasner ◽  
Gina Garland ◽  
Marco Griepentrog ◽  
...  

Abstract. A central question in carbon research is how stabilization mechanisms in soil change over time with soil development and how this is reflected in qualitative changes of soil organic matter (SOM). To address this matter, we assessed the influence of soil geochemistry on bulk SOM composition along a soil chronosequence in California, USA spanning 3 million years. This was done by combining data on soil mineralogy and texture from previous studies with additional measurements on total carbon (C), stable isotope values (δ13C and δ15N), and spectral information derived from Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS). To assess qualitative shifts in bulk SOM, we analysed the peak areas of simple plant-derived (S-POM), complex plant-derived (C-POM), and predominantly microbially derived OM (MOM) and their changes in abundance across soils varying several millennia to millions of years in weathering and soil development. We observed that SOM became increasingly stabilized and microbially-derived (lower C : N ratio, increasing δ13C and δ15N) as soil weathering progresses. Peak areas of S-POM (i.e. aliphatic root exudates) did not change over time, while peak areas of C-POM (lignin) and MOM (components of microbial cell walls (amides, quinones, and ketones)) increased over time and depth and were closely related to clay content and pedogenic iron oxides. Hence, our study suggests that with progressing soil development, SOM composition co-varies with changes in the mineral matrix. Our study indicates that a discrimination in favour of structurally more complex OM compounds (C-POM, MOM) gains importance as the mineral soil matrix becomes increasingly weathered.


2010 ◽  
Vol 40 (3) ◽  
pp. 401-409 ◽  
Author(s):  
John B. Bradford ◽  
Douglas N. Kastendick

Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon storage and sequestration. Altered stand age is a fundamental consequence of forest management, and stand age is a powerful predictor of ecosystem structure and function in even-aged stands. However, the relationship between stand age and either complexity or carbon storage and sequestration, especially trade-offs between the two, are not well characterized. We quantified these relationships in clearcut-origin, unmanaged pine and aspen chronosequences ranging from <10 to >130 years in northern Minnesota. Complexity generally increased with age, although compositional complexity changed more over time in aspen forests and structural complexity changed more over time in pine stands. Although individual carbon pools displayed various relationships with stand age, total carbon storage increased with age, whereas carbon sequestration, inferred from changes in storage, decreased sharply with age. These results illustrate the carbon and complexity consequences of varying forest harvest rotation length to favor younger or older forests and provide insight into trade-offs between these potentially conflicting management objectives.


2019 ◽  
Vol 9 ◽  
pp. 42-58
Author(s):  
Miftah Fekadu ◽  
Tsegaye Bekele ◽  
Sisay Feleke

In Ethiopia, wood was the main construction material for rural houses. In 2013, about 79% of the rural houses of Ethiopia were fully made of wood. Although carbon storage of wood is well known for climate change mitigation, there is lack of information on carbon stock of wooden houses in Ethiopia. Thus, a study was conducted to analyze the carbon stock of dominant land uses that surround rural wooden houses in three agro-ecologies and representative three peasant associations (PA) or Kebeles in Southern Ethiopia. Field measurement and household survey were made by selecting sixty-four houses made of wood, grass or corrugated iron sheet. Transects were laid starting from the wooden houses to lay out plots to collect samples of wood, grass, soot inside houses, soil and trees for carbon determination. The service age of wooden houses was estimated in triangulated interview as 5-150 years. The total carbon stock of newly constructed rural grass covered wooden house was 28.35- 49.26 kg C m-2, which was greater than the other surrounding land uses. The grazing land total carbon stock was 50.5-86.8% and the scattered trees carbon was 9.5-59.7% of the total carbon stock of the respective PA grass covered wooden house. Since soil is the common below ground carbon stock, the total carbon of a land use is mostly affected by the above ground carbon stock. Grass covered houses contained greater above ground carbon stock but grazinglands contained greater below ground carbon stock. Soot accumulation of 0.4-1.3 g m-2 inside the houses’ roof indicated the presence of indoor pollution. The total carbon stock increased with increasing altitude and geoclimatic variables were significantly correlated with carbon stock of the land uses (p<0.05; r = ±0.999). Therefore, wooden houses need to be considered in climate change mitigations. The shift of carbon stock from natural environment to wooden houses in human dominated landscapes was indicator of a lack of forests, and then efforts should be strengthened to increase forest cover.


Jurnal Galam ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 61-78
Author(s):  
Muhammad Abdul Qirom ◽  
◽  
Tri Ani Mindawati ◽  
Kissinger Kissinger ◽  
Abdhi Fithria ◽  
...  

Heath forest serves as a large carbon and water storage. This study aims to obtain information on carbon storage potential of each carbon component in heat forest in Liang Anggang Protection Forest. Data collection was carried out on six types of land cover, namely: agricultural land, barren land/settlement, scrub, peat soil, and forest. The carbon components were measured such as trees, undergrowth, litter, necromass, and soil. Measurement plots were established with size of 40 x 100 m for trees and necromasses > 30 cm in size, and sub-plots measuring 5 x 40 m for trees with a diameter of 5–30 cm as many as 5 plots for each type of land cover. The understorey and litter components used a plot with size of 0.5 x 0.5 m. In tree pools, carbon stock was determined by indirect measured with alometric model, while the other was used by direct measurenment. The results showed that carbon in the soil contributed the largest potential carbon storage (> 95%) of the total carbon storage in all land cover types. The pattern of the proportion of carbon storage in this forest type was similar to the peat swamp forest type. On heat forest, carbon stock potential on scrub was 318.8 Mg/Ha and the potential of heat forest type was the lowest (256.8 Mg/Ha ). In total, the average carbon storage potential was 285.01 ± 48.78 Mg/Ha. The carbon storage at this location reached 2.99 x 105 tons of carbon, or equivalent to carbon absorption of 1,10 X 106 CO2 e ton CO2e. The large amount of carbon storage in heath forest in the study area has the potential to support diversification and optimization of land use through a carbon trading scheme. Key words: trade, agriculture, proportion, scheme, soil


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 645
Author(s):  
Xianbin Liu ◽  
Xiaoming Zou ◽  
Min Cao ◽  
Tushou Luo

Upland and riparian soils usually differ in soil texture and moisture conditions, thus, likely varying in carbon storage and turnover time. However, few studies have differentiated their functions on the storage of soil organic carbon (SOC) in sub-tropical broad-leaved evergreen forests. In this study, we aim to uncover the SOC storage and 14C apparent age, in the upland and riparian soils of a primary evergreen broad-leaved montane subtropical moist forest in the Ailao Mountains of southwestern China. We sampled the upland and riparian soils along four soil profiles down to the parent material at regular intervals from two local representative watersheds, and determined SOC concentrations, δ13C values and 14C apparent ages. We found that SOC concentration decreased exponentially and 14C apparent age increased linearly with soil depth in the four soil profiles. Although, soil depth was deeper in the upland soil profiles than the riparian soil profiles, the weighted mean SOC concentration was significantly greater in the riparian soil (25.7 ± 3.9 g/kg) than the upland soil (19.7 ± 2.3 g/kg), but has an equal total SOC content per unit of ground area around 21 kg/m2 in the two different type soils. SOC δ13C values varied between −23.7 (±0.8)‰ and −33.2 (±0.2)‰ in the two upland soil profiles and between −25.5 (±0.4)‰ and −36.8 (±0.4)‰ along the two riparian soil profiles, with greater variation in the riparian soil profiles than the upland soil profiles. The slope of increase in SOC 14C apparent age along soil depth in the riparian soil profiles was greater than in the upland soil profiles. The oldest apparent age of SOC 14C was 23,260 (±230) years BP (before present, i.e., 1950) in the riparian soil profiles and 19,045 (±150) years BP in the upland soil profiles. Our data suggest that the decomposition of SOC is slower in the riparian soil than in the upland soil, and the increased SOC loss in the upland soil from deforestation may partially be compensated by the deposition of the eroded upland SOC in the riparian area, as an under-appreciated carbon sink.


Soil Research ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 777 ◽  
Author(s):  
Gabriela Civeira

Changes in contents of soil organic carbon and soil inorganic carbon (SOC and SIC, respectively) could have a great effect on the global carbon balance. Quantifying SIC at regional level is essential in climate change models. The spatial distribution of SIC depends on climate, soil particle size, soil type, landscape position and SOC fraction, among other factors. This study compared the SIC storage in soil profiles at different depths in different soil great groups and landscape positions in Buenos Aires province, Argentina. The objectives were to: (i) quantify SIC content and distribution in the soil profile (depths of 0–20, 20–100 and 0–100 cm) for different soil types and landscape positions; (ii) identify relationships between the distribution of SIC and edaphic properties; and (iii) analyse the relationship between SIC and SOC in soils of the area. The analysis was based on 150 soil profiles of Argiudolls, Hapludolls, Natraquolls and Haplustolls from Buenos Aires province. The data on SIC were expressed by soil great group, landscape position (summit, shoulder slope and toe slope) and depth in the soil profile (0–20, 20–100 and 0–100 cm). In the whole profile (0–100 cm) the order of decrease for SIC was Haplustolls > Hapludolls > Natraquolls > Argiudolls. Concentrations of SIC for landscape positions were shoulder slope > toe slope > summit. pH was positively correlated with SIC content within the 100-cm soil depth and in the AC horizon in Haplustolls (P < 0.05), and with SIC content in the C horizons in Hapludolls and Haplustolls. Silt was positively correlated with SIC in Haplustolls. There were changes in the contents of SIC due to increased SOC. Landscape position and great group determined the distribution of SIC in these Pampean agroecosystems. These results may be useful to predict SIC responses to land use change at local and regional levels.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5313
Author(s):  
Steven M. de Jong ◽  
Renée A. Heijenk ◽  
Wiebe Nijland ◽  
Mark van der Meijde

There is a gap between lab experiments where resistivity–soil moisture relations are generally very good and field studies in complex environmental settings where relations are always less good and complicated by many factors. An experiment was designed where environmental settings are more controlled, the best outside laboratory, to assess the transferability from lab to outdoor. A field experiment was carried out to evaluate the use of electric resistivity tomography (ERT) for monitoring soil moisture dynamics over a period of 67 days. A homogeneous site in the central part of The Netherlands was selected consisting of grass pasture on an aeolian sand soil profile. ERT values were correlated to gravimetric soil moisture samples for five depths at three different dates. Correlations ranged from 0.43 to 0.73 and were best for a soil depth of 90 cm. Resistivity patterns over time (time-lapse ERT) were analyzed and related to rainfall events where rainfall infiltration patterns could be identified. Duplicate ERT measurements showed that the noise level of the instrument and measurements is low and generally below 3% for the soil profile below the mixed layer but above the groundwater. Although the majority of the measured resistivity patterns could be well explained, some artefacts and dynamics were more difficult to clarify, even so in this homogeneous field situation. The presence of an oak tree with its root structure and a ditch with surface water with higher conductivity may have an impact on the resistivity pattern in the soil profile and over time. We conclude that ERT allows for detailed spatial measurement of local soil moisture dynamics resulting from precipitation although field experiments do not yield accuracies similar to laboratory experiments. ERT approaches are suitable for detailed spatial analyses where probe or sample-based methods are limited in reach or repeatability.


2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


Sign in / Sign up

Export Citation Format

Share Document