scholarly journals Carbon Storage of Wooden Houses, Trees, and Grazing Land in Rural Areas of Enemorina Ener District, Southern Ethiopia

2019 ◽  
Vol 9 ◽  
pp. 42-58
Author(s):  
Miftah Fekadu ◽  
Tsegaye Bekele ◽  
Sisay Feleke

In Ethiopia, wood was the main construction material for rural houses. In 2013, about 79% of the rural houses of Ethiopia were fully made of wood. Although carbon storage of wood is well known for climate change mitigation, there is lack of information on carbon stock of wooden houses in Ethiopia. Thus, a study was conducted to analyze the carbon stock of dominant land uses that surround rural wooden houses in three agro-ecologies and representative three peasant associations (PA) or Kebeles in Southern Ethiopia. Field measurement and household survey were made by selecting sixty-four houses made of wood, grass or corrugated iron sheet. Transects were laid starting from the wooden houses to lay out plots to collect samples of wood, grass, soot inside houses, soil and trees for carbon determination. The service age of wooden houses was estimated in triangulated interview as 5-150 years. The total carbon stock of newly constructed rural grass covered wooden house was 28.35- 49.26 kg C m-2, which was greater than the other surrounding land uses. The grazing land total carbon stock was 50.5-86.8% and the scattered trees carbon was 9.5-59.7% of the total carbon stock of the respective PA grass covered wooden house. Since soil is the common below ground carbon stock, the total carbon of a land use is mostly affected by the above ground carbon stock. Grass covered houses contained greater above ground carbon stock but grazinglands contained greater below ground carbon stock. Soot accumulation of 0.4-1.3 g m-2 inside the houses’ roof indicated the presence of indoor pollution. The total carbon stock increased with increasing altitude and geoclimatic variables were significantly correlated with carbon stock of the land uses (p<0.05; r = ±0.999). Therefore, wooden houses need to be considered in climate change mitigations. The shift of carbon stock from natural environment to wooden houses in human dominated landscapes was indicator of a lack of forests, and then efforts should be strengthened to increase forest cover.

Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


2012 ◽  
Vol 58 (No. 8) ◽  
pp. 372-379 ◽  
Author(s):  
M.R. Ullah ◽  
M. Al-Amin

The research was aimed to estimate above- and below-ground carbon stock in Tankawati natural hill forest of Bangladesh. A systematic sampling method was used to identify each sampling point through Global Positioning System (GPS). Loss on ignition and wet oxidation method were used to estimate biomass and soil carbon stock, respectively. Results revealed that the total carbon stock of the forest was 283.80 t&middot;ha<sup>&minus;1 </sup>whereas trees produce 110.94&nbsp;t&middot;ha<sup>&minus;1</sup>, undergrowth (shrubs, herbs and grass) 0.50 t&middot;ha<sup>&minus;1</sup>, litter fall 4.21 t&middot;ha<sup>&minus;1 </sup>and soil 168.15 t&middot;ha<sup>&minus;1 </sup>(up to 1m depth). The forest in the study area is a reservoir of carbon, as it has a good capacity to stock carbon from the atmosphere. To realize the forest sector potentiality inBangladesh, the carbon sequestration should be integrated with the Clean Development Mechanism (CDM) carbon trading system of the Kyoto Protocol. &nbsp; &nbsp;


2020 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Budiadi Budiadi

Konservasi karbon merupakan salah satu tindakan penting dalam rehabilitasi pesisir, khususnya pesisir selatan Pulau Jawa dengan keunikan ombak yang besar, salinitas tinggi dan sedimen beragam. Penelitian dilaksanakan untuk menduga simpanan karbon dalam berbagai bagian pada areal pesisir tersebut, yang terdiri dari tapak tergenang (tegakan mangrove 14 tahun jenis Avicennia/AV, Rhizophora/RH dan campuran/MX, lahan sedimen/SD, rumput/GR) dan tapak kering berpasir tegakan Casuarina equisetifolia/CS umur 18 tahun. Tiga sampai sembilan petak ukur dibuat untuk pengamatan dan pengukuran vegetasi, serta pengambilan sampel tanah (kedalaman 0-20, 20-40 dan 40-60 cm), dan pengukuran tegakan. Biomasa pohon diestimasi dengan mengkonvesri diameter batang (DBH) menggunakan persamaan alometrik. Biomasa pohon dirubah menjadi karbon tersimpan menggunakan berat jenis kayu yaitu 0,464 untuk above-ground (AGC), dan 0,39 untuk below-ground (BGC), serta untuk menduga biomasa karbon total (TBC). Karbon organik tanah (COT) dianalisis secara terpisah, dan digabungkan dengan karbon biomasa untuk memperkirakan simpanan karbon dalam ekosistem. Hasil penelitian menunjukkan variasi yang tinggi dari pertumbuhan dan kerapatan pohon, khususnya pada tegakan mangrove, dengan kemampuan regenerasi yang rendah. Tidak ditemukan perbedaan yang nyata dari simpanan karbon pada biomasa antara tegakan mangrove dengan Casuarina. Rerata TBC pada mangrove adalah 46,08 Mg C/ha, sedikit lebih rendah daripada CS (51,50 Mg C/ha). Di bawah tanah (hingga kedalaman 60 cm), tapak tergenang (AV, RH, MX, SD dan GR) secara nyata menyimpan COT lebih besar daripada tapak kering (CS). Kedalaman tanah secara nyata mempengaruhi COT, namun pada tapak tergenang semakin dalam tanah maka COT semakin besar, sedangkan tren sebaliknya pada tapak kering. Perkiraan total karbon tersimpan adalah 248.52 (±87.21) Mg C/ha, dengan terendah pada CS (94.46 Mg C/ha) dan tertinggi pada MX (324.77 Mg C/ha). Rehabilitasi pesisir berpeluang meningkatkan simpanan karbon ekosistem karena adanya adanya biomasa pohon, dibandingkan tapak terbuka yakni SD dan GR. Pada tapak tergenang/tegakan mangrove sebagian besar simpanan karbon berupa COT, dan lebih sedikit ditemukan pada CS. Perbedaan karakteristik simpanan karbon ini memerlukan penanganan atau konservasi yang berbeda, tetapi sama-sama membutuhkan rehabilitasi dan regenerasi buatan yang intensif. Carbon Stock Estimation in the South Coastal Rehabilitation Area of Java IslandAbstractCarbon conservation is one of important actions for coastal rehabilitation, in particular in the south coast of Java Island with its unique characteristics of strong tide, high salinity and diverse substrates. The research aimed to estimate carbon stocks from various carbon pools in the coast rehabilitation area, including wetland sites (14-year-old mangroves of Avicennia/AV, Rhizophora/RH and mix mangrove/MX, mudflat-sediment/SD, grassland/GR) and dry-sandy site of 18-year-old Casuarina equisetifolia/CS. Three to nine plots were established for observing and measuring vegetation, as well as taking soil sample at 0-20 cm, 20-40 cm, 40-60 cm depths. Tree biomass were estimated by converting treestem diameter using allometric equation. The tree biomass were converted into tree carbon using carbon density of 0.464 for aboveground (AGC), and 0.39 for below-ground (BGC), and to estimate total biomass carbon (TBC). Soil organic carbon (SOC) was analyzed separately, and combined with biomass carbon to estimate total carbon stock in the ecosystems. High variation of tree growth and density were found, especially in mangrove stands, with a low level of natural regeneration. No significant difference of carbon stock in biomass between mangroves and Casuarina was observed. Average TBC in mangroves (46.08 Mg C/ha) was slightly lower than in CS (51.50 Mg C/ha). In below ground (up to 60 cm depth), wetland sites (AV, RH, MX, SD and GR) significantly stored more SOC than dry land (CS). Soil depth significantly affected SOC, but in wetland sites deeper soil contained more carbon than upper, while an opposite trend was observed in CS. Estimated total carbon stock in the coast was 248.52 (±87.21) Mg C/ha, with the lowest in CS (94.46 Mg C/ha) and highest in MX (324.77 Mg C/ha). Rehabilitation activities in the coast possibly improve carbon stock in the ecosystems due to tree biomass, compared to open sites of SD and GR. In the wetland or mangroves, most of carbon was observed as SOC, and less in the dry-land site. The different characteristics of carbon storage in the south coast need different conservation techniques, but both sites need intensive rehabilitation work and artificial regeneration.


2021 ◽  
Vol 20 (2) ◽  
pp. 159-170
Author(s):  
Suyadi Suyadi ◽  
Venny Handayani ◽  
Agustina Fina ◽  
Wira Sudirja

The impacts of pollution and climate change occurred in global and local communities, including at school environment. Uncomfortable school environment due to pollution and school damage due to sea-level rise interferes with learning processes and reduces students' academic performance. A new approach of a school greening programme called Bunkers of Oxygen and Carbon (BOCs) was developed in a public school (SMA Negeri 3 Merauke) in Merauke, Papua using a thematic approach to mitigate pollution and climate change. The research showed that carbon storage of BOCs is mean 74 Mg ha-1 . This is equal with carbon dioxide equivalent (CO2e) of mean 271 Mg CO2e ha-1. The capacity of BOCs as carbon storage can be optimized due to the age of vegetation in BOCs is only four years old, and below ground carbon stock was measured only up to 50 cm depth. The amount of carbon stock in BOCs was influenced by vegetation health (tree density and canopy coverage) and vegetation structure (tree diameter and height) in the BOCs (r2 = 0.56, p = 0.001). The mean economic value of carbon stocks in the BOCs was US $ 189 billion ha-1. This economic value may underestimate as many benefits and functions of the BOCs were excluded from the calculation. BOCs have ecological functions as a habitat for many wildlife species, various ecosystem services, recreational areas, aesthetic values, oxygen supply, and a place to improve creativity and as natural laboratories for practice and learning from nature. Therefore, the development of BOCs in the school environment across Indonesia is important as the functions and benefits are crucial to mitigate pollution and climate change, improve the learning process and the quality of national education. 


2021 ◽  
Vol 13 (22) ◽  
pp. 12412
Author(s):  
Ghulam Yasin ◽  
Muhammad Farrakh Nawaz ◽  
Muhammad Zubair ◽  
Ihsan Qadir ◽  
Aansa Rukya Saleem ◽  
...  

Adopting agroforestry practices in many developing countries is essential to combat climate change and diversify farm incomes. This study investigated the above and below-ground biomass and soil carbon of a citrus-based intercropping system in six sites (subdivisions: Bhalwal, Kot Momin, Sahiwal, Sargodha, Shahpur and Silanwali) of District Sargodha, Southeast Pakistan. Tree biomass production and carbon were assessed by allometric equations through a non-destructive approach whereas, soil carbon was estimated at 0–15 cm and 15–30 cm depths. Above and below-ground biomass differed significantly, and the maximum mean values (16.61 Mg ha−1 & 4.82 Mg ha−1) were computed in Shahpur due to greater tree basal diameter. Tree carbon stock fluctuated from 6.98 Mg C ha−1 to 10.28 Mg C ha−1 among selected study sites. The surface soil (0–15 cm) had greater bulk density, organic carbon, and soil carbon stock than the subsoil (15–30 cm) in the whole study area. The total carbon stock of the ecosystem ranged from 25.07 Mg C ha−1 to 34.50 Mg C ha−1 across all study sites, respectively. The above findings enable us to better understand and predict the carbon storage potential of fruit-based agroforestry systems like citrus. Moreover, measuring carbon with simple techniques can produce trustworthy outcomes that enhance the participation of underdeveloped nations in several payment initiatives such as REDD+.


Cassowary ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1-9
Author(s):  
Siprianus Manibuy ◽  
Julius D. Nugroho ◽  
Anton S. Sinery

An urban forest is a collection of trees growing among buildings and people where they can protect the city as the functional traits. Forests are playing an important role in stabilizing CO2 concentrations in the atmosphere. As forest is a source of CO2 emissions, forests are also able to absorb and store CO2, so we could estimate the amount of CO2 absorbed by forest trees by calculating their biomass. This study aims to obtain the amount of carbon stock stored in the City Forest of Bumi Saniari, Teluk Bintuni Regency. Carbon stock was calculated to obtaine aboveground carbon (AGB), below ground carbon (BGB) and litter carbon (CS).  In this study no measurements were made of soil carbon. The method used in this research is descriptive method and field survey with measurements using the nondestructive method. The results obtained were 801.52 tons of stored carbon above ground (AGB), the soil surface / litter (CS) is 273.54 tons C. The total carbon stock is 10 hectares of 1,411.69 tons C.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Ming-Yun Chu ◽  
Wan-Yu Liu

As compared with conventional approaches for reducing carbon emissions, the strategies of reducing emissions from deforestations and forest degradation (REDD) can greatly reduce costs. Hence, the United Nations Framework Convention on Climate Change regards the REDD strategies as a crucial approach to mitigate climate change. To respond to climate change, Taiwan passed the Greenhouse Gas Reduction and Management Act to control the emissions of greenhouse gases. In 2021, the Taiwan government has announced that it will achieve the carbon neutrality target by 2050. Accordingly, starting with focusing on the carbon sink, the REDD strategies have been considered a recognized and feasible strategy in Taiwan. This study analyzed the net present value and carbon storage for various land-use types to estimate the carbon stock and opportunity cost of land-use changes. When the change of agricultural land to artificial forests generated carbon stock, the opportunity cost of carbon stock was negative. Contrarily, restoring artificial forests (which refer to a kind of forest that is formed through artificial planting, cultivation, and conservation) to agricultural land would generate carbon emissions, but create additional income. Since the opportunity cost of carbon storage needs to be lower than the carbon market price so that landlords have incentives to conduct REDD+, the outcomes of this study can provide a reference for the government to set an appropriate subsidy or price for carbon sinks. It is suggested that the government should offer sufficient incentives to reforest collapsed land, and implement interventions, promote carbon trading policies, or regulate the development of agricultural land so as to maintain artificial broadleaf forests for increased carbon storage.


2018 ◽  
Vol 9 (3) ◽  
pp. 167-174
Author(s):  
Dian Ariyanti ◽  
Nurheni Wijayanto ◽  
Iwan Hilwan

Vegetation is one factor that can decrease carbon accumulation in the atmosphere. The diversity of plant species in each land use has different abilities to absorb carbon in the atmosphere. This research was conducted in Pesisir Barat Regency of Lampung Province on 4 (four) types of land use, namely: (1) natural forest in Balai Kencana Resort, Bukit Barisan National Park (2) oil palm plantation in Pekon Marang, (3) coffee plantation in Pekon Suka Mulya, and (4) agroforestry of repong damar in Pekon Pahmungan. This reserach aims to analyze the diversity of plant species and to calculate the potential of plant carbon stock and carbon sequestration (above ground biomass) using alometric equations in various types of land use in Pesisir Barat Regency. The research method was vegetation analysis to learn about the diversity of plant species and calculation of carbon stock using alometric equations. The results showed that the composition of plant species in Bukit Barisan NP found 83 plant species belonging to 37 families, in the palm plantation found 9 plant species belonging to 8 families, in the coffee garden found 17 plant species belonging to 11 families, and in agroforestry of repong damar found 73 plant species belonging to 33 families. The total carbon stock potential was 376.16 ton/ha and carbon sequestrated. 1 257.20 ton/ha with the highest carbon uptake available at repong damar agroforestry site of 901.11 ton/ha.Keywords: aboveground biomass, carbon, diversity, pesisir barat regency


Author(s):  
Bayu Elwanto Bagus Dewanto ◽  
Retnadi Heru Jatmiko

Estimation of aboveground carbon stock on stands vegetation, especially in green open space, has become an urgent issue in the effort to calculate, monitor, manage, and evaluate carbon stocks, especially in a massive urban area such as Samarinda City, Kalimantan Timur Province, Indonesia. The use of Sentinel-1 imagery was maximised to accommodate the weaknesses in its optical imagery, and combined with its ability to produce cloud-free imagery and minimal atmospheric influence. The study aims to test the accuracy of the estimated model of above-ground carbon stocks, to ascertain the total carbon stock, and to map the spatial distribution of carbon stocks on stands vegetation in Samarinda City. The methods used included empirical modelling of carbon stocks and statistical analysis comparing backscatter values and actual carbon stocks in the field using VV and VH polarisation. Model accuracy tests were performed using the standard error of estimate in independent accuracy test samples. The results show that Samarinda Utara subdistrict had the highest carbon stock of 3,765,255.9 tons in the VH exponential model. Total carbon stocks in the exponential VH models were 6,489,478.1 tons, with the highest maximum accuracy of 87.6 %, and an estimated error of 0.57 tons/pixel.


2018 ◽  
Vol 61 (5) ◽  
pp. 429-440 ◽  
Author(s):  
Milica Stankovic ◽  
Naruemon Tantipisanuh ◽  
Anchana Prathep

Abstract Seagrass ecosystems are important contributors to mitigation of climate change, since they are responsible for large carbon sinks. However, there is limited knowledge regarding the importance of variability of carbon storage in various ecosystems. In this study, we estimated carbon storage in several structurally different seagrass meadows along the west coast of Thailand and determined whether degree of exposure, human disturbance, and meadow type influenced carbon storage within these meadows. Carbon content within the living vegetation was on average 3±2.7 Mg ha−1, whilst average storage of carbon in the sediment was 122±35.3 Mg ha−1. Meadow type and disturbance had a significant influence on total carbon storage in the ecosystem, while the degree of exposure of the bay did not show great differences. Uniform meadows had a higher average total carbon storage than mixed meadows (133±36.2 and 110±41.3 Mg ha−1, respectively). Undisturbed meadows had a higher average total carbon storage than disturbed ones (140±36.5 and 103±34.8 Mg ha−1, respectively). The results obtained contribute to our understanding of carbon storage on an ecosystem scale and can provide a baseline for proper management, conservation, and climate change studies in the region.


Sign in / Sign up

Export Citation Format

Share Document