scholarly journals Assessment of Fire Effects on Surface Runoff Erosion Susceptibility: The Case of the Summer 2021 Forest Fires in Greece

Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Niki Evelpidou ◽  
Maria Tzouxanioti ◽  
Theodore Gavalas ◽  
Evangelos Spyrou ◽  
Giannis Saitis ◽  
...  

The wildfires of summer 2021 in Greece were among the most severe forest fire events that have occurred in the country over the past decade. The conflagration period lasted for 20 days (i.e., from 27 July to 16 August 2021) and resulted in the devastation of an area of more than 3600 Km2. Forest fire events of similar severity also struck other Mediterranean countries during this period. Apart from their direct impacts, forest fires also render an area more susceptible to runoff erosion by massively removing its vegetation, among other factors. It is clear that immediately after a forest fire, most areas are much more susceptible to erosion. In this paper, we evaluate the erosion hazard of Attica, Northern Euboea, and the Peloponnese that were devastated by forest fires during the summer of 2021 in Greece, in comparison with their geological and geomorphological structures, as well as land cover and management. Given that a very significant part of these areas were burnt during the major conflagrations of this summer, erosion risk, as well as flood risk, are expected to be very high, especially for the coming autumn and winter. For the evaluation of erosion risk, the burnt areas were mapped, and the final erosion-risk maps were constructed through GIS software. The final maps suggest that most of the burnt areas are highly susceptible to future surface runoff erosion events.

Author(s):  
S. Mariscal ◽  
M. Ríos ◽  
F. Soria

Abstract. Forest fires have negative effects on biodiversity, the atmosphere and human health. The paper presents a spatial risk model as a tool to assess them. Risk areas refer to sectors prone to the spread of fire, in addition to the influence of human activity through remote sensing and multi-criteria analysis. The analysis includes information on land cover, land use, topography (aspect, slope and elevation), climate (temperature and precipitation) and socio-economic factors (proximity to settlements and roads). Weights were assigned to each in order to generate the forest fire risk map. The investigation was carried for a Biological Reserve in Bolivia because of the continuous occurrence of forest fires. Five risk categories for forest fires were derived: very high, high, moderate, low and very low. In summary, results suggest that approximately 67% of the protected area presents a moderate to very high risk; in the latter, populated areas are not dense which reduces the actual risk to the type of events analyzed.


2019 ◽  
Vol 11 (18) ◽  
pp. 2101 ◽  
Author(s):  
M. Ahmed ◽  
Quazi Hassan ◽  
Masoud Abdollahi ◽  
Anil Gupta

Forest fires are natural disasters that create a significant risk to the communities living in the vicinity of forested landscape. To minimize the risk of forest fires for the resilience of such urban communities and forested ecosystems, we proposed a new remote sensing-based medium-term (i.e., four-day) forest fire danger forecasting system (FFDFS) based on an existing framework, and applied the system over the forested regions in the northern Alberta, Canada. Hence, we first employed moderate resolution imaging spectroradiometer (MODIS)-derived daily land surface temperature (Ts) and surface reflectance products along with the annual land cover to generate three four-day composite for Ts, normalized difference vegetation index (NDVI), and normalized difference water index (NDWI) at 500 m spatial resolution for the next four days over the forest-dominant regions. Upon generating these four-day composites, we calculated the variable-specific mean values to determine variable-specific fire danger maps with two danger classes (i.e., high and low). Then, by assuming the cloud-contaminated pixels as the low fire danger areas, we combined these three danger maps to generate a four-day fire danger map with four danger classes (i.e., low, moderate, high, and very high) over our study area of interest, which was further enhanced by incorporation of a human-caused static fire danger map. Finally, the four-day scale fire danger maps were evaluated using observed/ground-based forest fire occurrences during the 2015–2017 fire seasons. The results revealed that our proposed system was able to detect about 75% of the fire events in the top two danger classes (i.e., high and very high). The system was also able to predict the 2016 Horse River wildfire, the worst fire event in Albertian and Canadian history, with about 67% agreement. The higher accuracy outputs from our proposed model indicated that it could be implemented in the operational management, which would be very useful for lessening the adverse impact of such fire events.


2013 ◽  
Vol 22 (6) ◽  
pp. 730 ◽  
Author(s):  
Maria Vincenza Chiriacò ◽  
Lucia Perugini ◽  
Dora Cimini ◽  
Enrico D'Amato ◽  
Riccardo Valentini ◽  
...  

Wildfires are the most common disturbances in Mediterranean forest ecosystems that cause significant emissions of greenhouse gases as a result of biomass burning. Despite this, there is reasonably high uncertainty regarding the actual fraction of burnt biomass and the related CO2 and non-CO2 gas emissions released during forest fires. The aim of this paper is to compare existing methodologies adopted in the National Greenhouse Gas Inventory reports of five of the most fire-affected countries of southern Europe (Italy, Spain, Greece, Portugal, France) with those proposed in the literature, to operationally estimate forest fire emissions, and to discuss current perspectives on reducing uncertainties in reporting activities for the Land Use, Land Use Change and Forestry sector under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Five selected approaches have been experimentally applied for the estimation of burnt biomass in forest fire events that occurred in Italy in the period 2008–2010. Approaches based on nominal rates of biomass loss can lead to an overly conservative value or, conversely, to underestimation of the fraction of burnt biomass. Uncertainties can be greatly reduced by an operational method able to assess inter-annual and local variability of fire effects on fire-affected forest types.


2021 ◽  
Vol 12 (2) ◽  
pp. 78-85
Author(s):  
Bambang Hero Saharjo ◽  
Yulia Eka Nurjanah

Forest fires are a form of forest disturbance that often occurs. Every year, forest fires in Indonesia occur during the dry season. The causes of forest fires in Indonesia are natural and human factors. Forest fires cause an enormous loss in properly controlling forest fires. This study aims to analyze the factors that cause forest fires and examine the efforts to control forest fires and the role of community participation in forest fire control at BKPH Slarang, KPH Pemalang, Central Java. The highest forest fires occurred in 2015 with a frequency of 4 times that the total area of land burned was 11,10 hectares. Forest fire in BKPH Slarang caused a loss of costing IDR 50,234,000. The form of control exercised by BKPH is socialization or counseling about fires. Direct socialization or counseling is given to the community in various activities. Community participation is very high in prevention and blackout activities at BKPH Slarang KPH Pemalang. Key words: BKPH Slarang, causative factors, community participation, control of forest fire


2020 ◽  
Vol 12 (24) ◽  
pp. 4169
Author(s):  
Dai Quoc Tran ◽  
Minsoo Park ◽  
Daekyo Jung ◽  
Seunghee Park

Estimating the damaged area after a forest fire is important for responding to this natural catastrophe. With the support of aerial remote sensing, typically with unmanned aerial vehicles (UAVs), the aerial imagery of forest-fire areas can be easily obtained; however, retrieving the burnt area from the image is still a challenge. We implemented a new approach for segmenting burnt areas from UAV images using deep learning algorithms. First, the data were collected from a forest fire in Andong, the Republic of Korea, in April 2020. Then, the proposed two-patch-level deep-learning models were implemented. A patch-level 1 network was trained using the UNet++ architecture. The output prediction of this network was used as a position input for the second network, which used UNet. It took the reference position from the first network as its input and refined the results. Finally, the final performance of our proposed method was compared with a state-of-the-art image-segmentation algorithm to prove its robustness. Comparative research on the loss functions was also performed. Our proposed approach demonstrated its effectiveness in extracting burnt areas from UAV images and can contribute to estimating maps showing the areas damaged by forest fires.


2021 ◽  
pp. 84-99
Author(s):  
Krishna Bahadur Bhujel ◽  
Rejina Maskey Byanju ◽  
Ambika P. Gautam ◽  
Ramesh Prasad Sapkota ◽  
Udhab Raj Khadka

Forest fires triggered by various natural and anthropogenic drivers are increasing and threatening forest ecosystems across the globe. In Nepal, the high value Tropical Mixed Broad-leaved Forests are prone to fire caused by both natural and anthropogenic drivers. Thus, understanding fire drivers and their effect is important for the sustainable forest fire management. However, the preceding studies on forest specific fire drivers and their effect are limited. This research has identified the fire drivers and assessed their effect to fire occurrences in the Tropical Mixed Broad-leaved Forests of Nawalparasi District, Nepal. Fire drivers were identified and prioritized by participatory approaches. The fire incidences and burnt areas were obtained from the MODIS fire data (2001–2017). The results revealed altogether 20 drivers including eight natural and 12 anthropogenic. Based on the public perception and magnitude of forest fire, among the natural drivers, temperature, precipitation, forest fuel, aspect, elevation and slope were the major drivers. Likewise, among the anthropogenic drivers, forest distance from roads and settlements showed significant effect. The natural drivers, ambient temperature >30ºC and annual precipitation <2400 mm, revealed signi-ficant impacts on forest fire. Likewise, forests situated at lower elevation (<500 m), and southern and eastern aspects were highly vulnerable to fire. Considering anthropogenic drivers, forest lying within 500 m from the roads and settlements were highly vulnerable to fire. Among the forest types, the Hill Sal Forest was more affected. Future strategies should address the major fire drivers, construction of adequate fire lines and conservation ponds for the sustainable forest management.


2019 ◽  
Vol 11 (2) ◽  
pp. 374 ◽  
Author(s):  
Vítor Martinho

Recent forest fire activity has resulted in several consequences across different geographic locations where both natural and socioeconomic conditions have promoted a favorable context for what has happened in recent years in a number of countries, including Portugal. As a result, it would be interesting to examine the implications of forest fire activity in terms of the socioeconomic dynamics and performance of the agroforestry sectors in the context of those verified in the Portuguese municipalities. For this purpose, data from Statistics on Portugal was considered for output and employment from the business sector related to agricultural and forestry activities, which were disaggregated at the municipality level, for the period 2008–2015. Data for the burnt area was also considered in order to assess the impact of forest fires. The data was analyzed using econometric models in panel data based on the Keynesian (Kaldor laws) and convergence (conditional approaches) theories. The results from the Keynesian approaches show that there are signs of increasing returns to scale in the Portuguese agroforestry sectors, where the burnt area increased employment growth in agricultural activities and decreased employment in the forestry sector. Forest fires seem to create favorable conditions for agricultural employment in Portuguese municipalities and the inverse occurs for forestry employment. Additionally, some signs of convergence were identified between Portuguese municipalities for agroforestry output and employment, as well for the burnt areas. However, signs of divergence (increasing returns to scale) from the Keynesian models seem to be stronger. On the other hand, the evidence of beta convergence for the burnt areas are stronger than those verified for other variables, showing that the impacts from forest fires are more transversal across the whole country (however not enough to have sigma convergence).


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3533
Author(s):  
Emily E. Smoot ◽  
Kelly E. Gleason

As climate warms, snow-water storage is decreasing while forest fires are increasing in extent, frequency, and duration. The majority of forest fires occur in the seasonal snow zone across the western US. Yet, we do not understand the broad-scale variability of forest fire effects on snow-water storage and water resource availability. Using pre- and post-fire data from 78 burned SNOTEL stations, we evaluated post-fire shifts in snow accumulation (snow-water storage) and snowmelt across the West and Alaska. For a decade following fire, maximum snow-water storage decreased by over 30 mm, and the snow disappearance date advanced by 9 days, and in high severity burned forests snowmelt rate increased by 3 mm/day. Regionally, forest fires reduced snow-water storage in Alaska, Arizona, and the Pacific Northwest and advanced the snow disappearance date across the Rockies, Western Interior, Wasatch, and Uinta mountains. Broad-scale empirical results of forest fire effects on snow-water storage and snowmelt inform natural resource management and modeling of future snow-water resource availability in burned watersheds.


2011 ◽  
Vol 8 (5) ◽  
pp. 9747-9761
Author(s):  
J.-P. Muller ◽  
V. Yershov ◽  
D. Fisher ◽  
M. Krol ◽  
W. Peters ◽  
...  

Abstract. The ALANIS (Atmosphere-LANd Integrated Study) Smoke Plume project is an on-going study funded by the ESA's Support to Science Element (STSE) dedicated to the monitoring of the fire aerosol and trace gases dispersion over Eurasia from multi-mission EO-based data, in link with the scientific issues of land-atmosphere processes in the iLEAPS community. The injection and dispersion of the smoke plumes are performed with the TM5 model from several new products (burnt areas and forest fire emissions amounts, smoke plumes injection heights) derived from the MERIS and AATSR products and from the validated IASI CO products. A first study focused on the Russian wildfire events of the summer of 2010 has shown the potential of the European missions to assess the forest fire emissions and the aerosols/gases injection and transport over Eurasia. The release of the integrated model, including the new products still under development, is planned for the summer of 2011.


2016 ◽  
Vol 11 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Muhammad Ikhwan

Forest fire is one form of the disorder occur more frequently. The negative impact caused by forest fires large enough cover ecological damage, declining biodiversity, the decline in the economic value of forest and soil productivity, chan ges in micro and global climate and the smoke damage the health of people and disrupting transport by land, river, lake, sea and air. Given the impact of the forest fires, the efforts to protect the forest areas is very important. In an effort to control forest fires it is essential to map vulnerability to wildfires prepared to know which areas have the potential for fires. The purpose of this study was to map the vulnerability of land and forest fires in an effort to support the establishment of forest fire management strategy. Through a vulnerability map wildfires can provide vulnerability information to policy-making forest fire prevention / fire control and is expected to be the basis in prevention efforts as early as possible. The study was conducted from June until July 2014 and the case study research in Rokan Hilir Regency. Results of mapping the vulnerability of land and forest fires shows that most areas of Rokan Hilir Regency has a severe impact and the level of vulnerability is very high. Low-prone areas have extensive 9152.55 hectares (1.01%), the rate of moderate-prone area of 158,943.95 hectares (17.49%), high-level-prone area of 382,448.62 hectares (42.08%) and very high levels of vulnerability with an area of 358,374.00 hectares (39.43%).


Sign in / Sign up

Export Citation Format

Share Document