scholarly journals Short Term Effects of Revegetation on Labile Carbon and Available Nutrients of Sodic Soils in Northeast China

Land ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Pujia Yu ◽  
Xuguang Tang ◽  
Shiwei Liu ◽  
Wenxin Liu ◽  
Aichun Zhang

In response to land degradation and the decline of farmers’ income, some low quality croplands were converted to forage or grassland in Northeast China. However, it is unclear how such land use conversions influence soil nutrients. The primary objective of this study was to investigate the influences of short term conversion of cropland to alfalfa forage, monoculture Leymus chinensis grassland, monoculture Leymus chinensis grassland for hay, and successional regrowth grassland on the labile carbon and available nutrients of saline sodic soils in northeastern China. Soil labile oxidizable carbon and three soil available nutrients (available nitrogen, available phosphorus, and available potassium) were determined at the 0–50 cm depth in the five land uses. Results showed that the treatments of alfalfa forage, monoculture grassland, monoculture grassland for hay, and successional regrowth grassland increased the soil labile oxidizable carbon contents (by 32%, 28%, 15%, and 32%, respectively) and decreased the available nitrogen contents (by 15%, 19%, 34%, and 27%, respectively) in the 0–50 cm depth compared with cropland, while the differences in the contents of available phosphorus and available potassium were less pronounced. No significant differences in stratification ratios of soil labile carbon and available nutrients, the geometric means of soil labile carbon and available nutrients, and the sum scores of soil labile carbon and available nutrients were observed among the five land use treatments except the stratification ratio of 0–10/20–30 cm for available phosphorus and the values of the sum scores of soil labile carbon and available nutrients in the 0–10 cm depth. These findings suggest that short term conversions of cropland to revegetation have limited influences on the soil labile carbon and available nutrients of sodic soils in northeastern China.

2015 ◽  
Vol 7 (3) ◽  
pp. 2413-2444 ◽  
Author(s):  
X. Lu ◽  
Y. Yan ◽  
J. Sun ◽  
X. Zhang ◽  
Y. Chen ◽  
...  

Abstract. Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties, including soil bulk density, pH, particle size distributions, and proportion of aggregates, were not significant different between FG and GE plots. Soil organic carbon, soil available nitrogen, available phosphorus contents did not differ with grazing exclusion treatments in both 0–15 and 15–30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at the 0–15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil properties and nutrients indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommend any policies designed for alpine grasslands degraded soil restoration in the future. Nevertheless, because the results of the present study come from short term (6–8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long term continued research.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1195-1205 ◽  
Author(s):  
X. Lu ◽  
Y. Yan ◽  
J. Sun ◽  
X. Zhang ◽  
Y. Chen ◽  
...  

Abstract. Since the 1980s, alpine grasslands have been seriously degraded on the Tibetan Plateau. Grazing exclusion by fencing has been widely adopted to restore degraded grasslands. To clarify the effect of grazing exclusion on soil quality, we investigated soil properties and nutrients by comparing free-grazing (FG) and grazing exclusion (GE) grasslands in Tibet. Soil properties – including soil bulk density, pH, particle size distributions, and proportion of aggregates – showed no significant difference between FG and GE plots. Soil organic carbon, soil available nitrogen, and available phosphorus contents did not differ with grazing exclusion treatments in both the 0–15 and 15–30 cm layer. However, soil total nitrogen and total phosphorus contents were remarkably reduced due to grazing exclusion at 0–15 cm depth. Furthermore, growing season temperature and/or growing season precipitation had significant effects on almost all soil property and nutrient indicators. This study demonstrates that grazing exclusion had no impact on most soil properties and nutrients in Tibet. Additionally, the potential shift of climate conditions should be considered when recommending any policy designed for restoration of degraded soil in alpine grasslands in the future. Nevertheless, because the results of the present study come from a short-term (6–8 years) grazing exclusion, the assessments of the ecological effects of the grazing exclusion management strategy on soil quality of degraded alpine grasslands in Tibet still need long-term continued research.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Songhe Chen ◽  
Rencai Gao ◽  
Xiaoling Xiang ◽  
Hongkun Yang ◽  
Hongliang Ma ◽  
...  

AbstractMicrobe-mediated ammonia oxidation is a key process in soil nitrogen cycle. However, the effect of maize straw mulching on the ammonia oxidizers in the alkaline purple soil remains largely unknown. A three-year positioning experiment was designed as follows: straw mulching measures as the main-plot treatment and three kinds of nitrogen application as the sub-plot treatment. We found the contents of soil organic carbon (SOC), total nitrogen (TN), available potassium (AK), available nitrogen (AN), available phosphorus (AP), and NH4+-N were increased after straw mulching and nitrogen application in alkaline purple soil, so did the amoA genes abundance of ammonia-oxidizing archaeal (AOA) and bacterial (AOB). Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that Thaumarchaeote (448-bp T-RF) was dominated the AOA communities, whereas Nitrosospira sp (111-bp T-RF) dominated the AOB communities. The community compositions of both AOA and AOB were altered by straw mulching and nitrogen application in alkaline purple soil, however, the AOB communities was more responsive than AOA communities to the straw mulching and nitrogen application. Further analysis indicated that SOC and AP were the main factors affecting the abundance and community compositions of AOA and AOB in alkaline purple soil. The present study reported that straw mulching and nitrogen strategies differently shape the soil ammonia oxidizers community structure and abundance, which should be considered when evaluating agricultural management strategies regarding their sustainability and soil quality.


2014 ◽  
Vol 13 (3) ◽  
pp. 491-498 ◽  
Author(s):  
Yun-feng YIN ◽  
Xin-hua HE ◽  
Ren GAO ◽  
Hong-liang MA ◽  
Yu-sheng YANG

2017 ◽  
Vol 9 (1) ◽  
pp. 55-59
Author(s):  
Dilpreet Talwar ◽  
Kulbir Singh ◽  
Jagdish Singh

Biofertilizers improves the soil microbial content, Soil nutrient status and nutrient uptake by plant. In an experiment, fifteen treatments comprised of various combinations of biofertilizers, organic manures and chemical fertilizers were compared to access the impact of different sources of nutrient on performance of onion. The highest soil organic carbon (0.40%) was observed in the treatments T12 (Farm Yard Manure (FYM) @ 20 t/ha) and T11 (FYM myctes count (29.9 X 104) was recorded in T11 (FYM @ 20 t/ha + Azotobacter + VAM) treatment while highest fungal @ 20 t/ha + Azotobacter + Vesicular-Arbuscular Mycorrhizae (VAM)). Highest bacterial (24.5 X 106) and actino-count (17.5 X 103) was observed in T3 (Azospirillium+ Recommended dose of NPK) treatment. At the time of harvesting, available nitrogen (N), available phosphorus (P) and available potassium (K) were higher in treatment T3 (Azospirillium + Recommended dose of NPK), T9 (Azotobacter+ VAM + Recommended dose of NPK) and T13 (Poultry treatment (162.6 Kg ha-1) as compared to all other treatments except T1 and T9 treatments while P uptake (13.6 Kg ha-Manure @ 5t/ha) treatments respectively than that in other treatments. Azospirillum and Azotobacter application along with recommended dose of N, P and K improved the fertility status of soil. The N uptake was significantly higher in T3 treatments. The present study highlights the need of use of biofertilizers along with organic and inorganic 1) was significantly higher in T9 treatment than that in other treatments except T1, T3, T5 and T7 treatments. The K uptake was significantly higher in T3 treatment (126.9 Kg ha-1) as compare to all other treatments except T1 and T9 manures/fertilizer to enhance the nutrient availability and improve soil health.


2021 ◽  
Author(s):  
Yuqi Qi ◽  
Haolang Liu ◽  
Jihong Wang ◽  
Yingping Wang

Abstract Ginseng is an important cash crop. The long-term continuous cropping of ginseng causes the imbalance of soil environment and the exacerbation of soil-borne diseases, which affects the healthy development of ginseng industry. In this study, ginseng continuous cropping soil was treated with microbial inocula using broad-spectrum biocontrol microbial strain Frankia F1. Wheat straw, rice straw and corn straw were the best carrier materials for microbial inoculum. After treatment with microbial inoculum prepared with corn stalk biochar, the soil pH value, organic matter, total nitrogen, available nitrogen, available phosphorus, and available potassium were increased by 11.18%, 55.43%, 33.07%, 26.70%, 16.40%, and 9.10%, the activities of soil urease, catalase and sucrase increased by 52.73%, 16.80% and 43.80%, respectively. A Metagenomic showed that after the application of microbial inoculum prepared fromwith corn stalk biochar, soil microbial OTUs, Chao1 index, Shannon index, and Simpson index increased by 19.86%, 16.05%, 28.83%, and 3.16%, respectively. Three classes (Alphaproteobacteria, Gammaproteobacteria and Sphingobacteria) were the dominant bacteria in ginseng soil, and their abundance increased by 7.87%, 9.81% and 1.24%, respectively, after treatment with microbial inoculum (corn stalk biochar). Results indicated that the most effective treatment in ginseng soil ould be the combined application of corn stalk biochar and Frankia F1.


Sign in / Sign up

Export Citation Format

Share Document