scholarly journals Retrieving the National Main Commodity Maps in Indonesia Based on High-Resolution Remotely Sensed Data Using Cloud Computing Platform

Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 377 ◽  
Author(s):  
Aryo Adhi Condro ◽  
Yudi Setiawan ◽  
Lilik Budi Prasetyo ◽  
Rahmat Pramulya ◽  
Lasriama Siahaan

Indonesia has the most favorable climates for agriculture because of its location in the tropical climatic zones. The country has several commodities to support economics growth that are driven by key export commodities—e.g., oil palm, rubber, paddy, cacao, and coffee. Thus, identifying the main commodities in Indonesia using spatially-explicit tools is essential to understand the precise productivity derived from the agricultural sectors. Many previous studies have used predictions developed using binary maps of general crop cover. Here, we present national commodity maps for Indonesia based on remote sensing data using Google Earth Engine. We evaluated a machine learning algorithm—i.e., Random Forest to parameterize how the area in commodity varied in Indonesia. We used various predictors to estimate the productivity of various commodities based on multispectral satellite imageries (36 predictors) at 30-meters spatial resolution. The national commodity map has a relatively high accuracy, with an overall accuracy of about 95% and Kappa coefficient of about 0.90. The results suggest that the oil palm plantation was the highest commodity product that occupied the largest land of Indonesia. However, this study also showed that the land area in rubber, rice paddies, and cacao commodities was underestimated due to its lack of training samples. Improvement in training data collection for each commodity should be done to increase the accuracy of the commodity maps. The commodity data can be viewed online (website can be found in the end of conclusions). This data can further provide significant information related to the agricultural sectors to investigate food provisioning, particularly in Indonesia.

Author(s):  
Xiaoming Li ◽  
Yan Sun ◽  
Qiang Zhang

In this paper, we focus on developing a novel method to extract sea ice cover (i.e., discrimination/classification of sea ice and open water) using Sentinel-1 (S1) cross-polarization (vertical-horizontal, VH or horizontal-vertical, HV) data in extra wide (EW) swath mode based on the machine learning algorithm support vector machine (SVM). The classification basis includes the S1 radar backscatter coefficients and texture features that are calculated from S1 data using the gray level co-occurrence matrix (GLCM). Different from previous methods where appropriate samples are manually selected to train the SVM to classify sea ice and open water, we proposed a method of unsupervised generation of the training samples based on two GLCM texture features, i.e. entropy and homogeneity, that have contrasting characteristics on sea ice and open water. We eliminate the most uncertainty of selecting training samples in machine learning and achieve automatic classification of sea ice and open water by using S1 EW data. The comparison shows good agreement between the SAR-derived sea ice cover using the proposed method and a visual inspection, of which the accuracy reaches approximately 90% - 95% based on a few cases. Besides this, compared with the analyzed sea ice cover data Ice Mapping System (IMS) based on 728 S1 EW images, the accuracy of extracted sea ice cover by using S1 data is more than 80%.


2020 ◽  
Vol 12 (20) ◽  
pp. 3303
Author(s):  
Natalia Verde ◽  
Ioannis P. Kokkoris ◽  
Charalampos Georgiadis ◽  
Dimitris Kaimaris ◽  
Panayotis Dimopoulos ◽  
...  

Land-Use/Land-Cover (LULC) products are a common source of information and a key input for spatially explicit models of ecosystem service (ES) supply and demand. Global, continental, and regional, readily available, and free land-cover products generated through Earth Observation (EO) data, can be potentially used as relevant to ES mapping and assessment processes from regional to national scales. However, several limitations exist in these products, highlighting the need for timely land-cover extraction on demand, that could replace or complement existing products. This study focuses on the development of a classification workflow for fine-scale, object-based land cover mapping, employed on terrestrial ES mapping, within the Greek terrestrial territory. The processing was implemented in the Google Earth Engine cloud computing environment using 10 m spatial resolution Sentinel-1 and Sentinel-2 data. Furthermore, the relevance of different training data extraction strategies and temporal EO information for increasing the classification accuracy was also evaluated. The different classification schemes demonstrated differences in overall accuracy ranging from 0.88% to 4.94% with the most accurate classification scheme being the manual sampling/monthly feature classification achieving a 79.55% overall accuracy. The classification results suggest that existing LULC data must be cautiously considered for automated extraction of training samples, in the case of new supervised land cover classifications aiming also to discern complex vegetation classes. The code used in this study is available on GitHub and runs on the Google Earth Engine web platform.


2022 ◽  
Vol 88 (1) ◽  
pp. 47-53
Author(s):  
Muhammad Nasar Ahmad ◽  
Zhenfeng Shao ◽  
Orhan Altan

This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion of food chain and gross domestic product for Sindh, Pakistan.


Author(s):  
Nadia Dwi Kartika ◽  
I Wayan Astika ◽  
Edi Santosa

Forecasting of oil palm yield has become a main factor in the management of oil palm industries for proper planning and decision making in order to avoid monthly high cost in harvesting. Predicting future value of oil palm yield with minimum error becomes an important issue recently. A lot of factors determine the productivity of oil palm and weather variables play an important role that affect plant growth and development that may reduce yield significantly. This research used secondary data of yield and weather variables available in company administration. It proposed feed forward neural network with back propagation learning algorithm to build a monthly yield forecasting model. The optimization procedure of ANN architecture obtained the best using 60 neurons in input layer, five hidden layers and one neuron in the output layer. Training data were from January 2005 to June 2008 while testing data were from July 2008 to December 2009. ANN architecture using five hidden layers gave the best accuracy with MAE 0.5346 and MSE 0.4707 while the lowest accuracy occurred by using two hidden layers with MAE 1.5843and MSE 4.087.


Author(s):  
A. F. Carneiro ◽  
W. V. Oliveira ◽  
S. J. S. Sant'Anna ◽  
J. Doblas ◽  
D. V. Vaz

Abstract. Recent advances in cloud-computing technologies and remote sensing data availability foster the development of studies based on the analysis of optical and SAR imagery time series. In this paper, we assess the potential of Sentinel-1 imagery time series for grassland detection in the northern Brazilian Amazon. We used the Google Earth Engine cloud-computing platform as an alternative to obtain and analyse Sentinel-1 imagery, acquired from 2017 to 2018 over the region of Mojuí dos Campos/PA, Brazil. We extracted several temporal metrics from the imagery time series and used the Random Forest algorithm to perform the classification. In addition, we analysed the time series considering different channels, including the VV and VH polarizations, both separately and in combination, and the CR, RGI and NL indices. We could efficiently discriminate areas of grasslands from forest and agricultural crops using either VH time features or features extracted from the combination of both VV and VH polarizations. The classification map that resulted from the combination of VV and VH data presented the highest accuracy, with an overall accuracy of 95.33% and a 0.93 kappa index. Despite simple, the approach adopted in this paper showed potential to differ grasslands from areas of agriculture and forest in the northern Brazilian Amazon.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Arsalan Ghorbanian ◽  
Seyed Ali Ahmadi ◽  
Meisam Amani ◽  
Ali Mohammadzadeh ◽  
Sadegh Jamali

Mangroves, as unique coastal wetlands with numerous benefits, are endangered mainly due to the coupled effects of anthropogenic activities and climate change. Therefore, acquiring reliable and up-to-date information about these ecosystems is vital for their conservation and sustainable blue carbon development. In this regard, the joint use of remote sensing data and machine learning algorithms can assist in producing accurate mangrove ecosystem maps. This study investigated the potential of artificial neural networks (ANNs) with different topologies and specifications for mangrove classification in Iran. To this end, multi-temporal synthetic aperture radar (SAR) and multi-spectral remote sensing data from Sentinel-1 and Sentinel-2 were processed in the Google Earth Engine (GEE) cloud computing platform. Afterward, the ANN topologies and specifications considering the number of layers and neurons, learning algorithm, type of activation function, and learning rate were examined for mangrove ecosystem mapping. The results indicated that an ANN model with four hidden layers, 36 neurons in each layer, adaptive moment estimation (Adam) learning algorithm, rectified linear unit (Relu) activation function, and the learning rate of 0.001 produced the most accurate mangrove ecosystem map (F-score = 0.97). Further analysis revealed that although ANN models were subjected to accuracy decline when a limited number of training samples were used, they still resulted in satisfactory results. Additionally, it was observed that ANN models had a high resistance when training samples included wrong labels, and only the ANN model with the Adam learning algorithm produced an accurate mangrove ecosystem map when no data standardization was performed. Moreover, further investigations showed the higher potential of multi-temporal and multi-source remote sensing data compared to single-source and mono-temporal (e.g., single season) for accurate mangrove ecosystem mapping. Overall, the high potential of the proposed method, along with utilizing open-access satellite images and big-geo data processing platforms (i.e., GEE, Google Colab, and scikit-learn), made the proposed approach efficient and applicable over other study areas for all interested users.


2021 ◽  
Author(s):  
Joris Wiethase

<p>Semiarid rangelands have been identified as at high risk of degradation as a result of changing socio-ecological conditions. Tanzanian savannahs are typical and some areas have become degraded in recent years, while other areas maintain resilience. To track pathways to degradation, we developed a workflow to create annual maps of degradation for all of Tanzania, at a high spatial (30m) and temporal (30+ years) resolution, as a function of bare ground and invasive plant cover. Making use of the freely available Google Earth Engine (GEE) computing platform, we created annual composites of Landsat remote sensing data. Using GEE machine learning algorithms, trained with data from extensive field surveys conducted in 2016, we predicted degradation scores for all of Tanzania from the Landsat composites. Our models produced significant correlations at the pixel level between test predictions and observations, rather better for the bare ground component of degradation than the invasive plants cover (bare ground r = 0.7, invasive plant cover r = 0.44). The resulting map provides an unprecedented data source for degradation in terms of extent and spatial resolution for the region. Through a novel data analysis approach using Integrated Nested Laplace Approximations (INLA), we show that degradation correlates with rainfall, human population and livestock density, as well as different management strategies. This study showcases the potential of GEE for analysing savannah degradation over large geographical areas, whilst highlighting the usefulness of INLA for this type of analysis.</p>


2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


Sign in / Sign up

Export Citation Format

Share Document