scholarly journals Modelling Dose Effects from Space Irradiations: Combination of High-LET and Low-LET Radiations with a Modified Microdosimetric Kinetic Model

Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 161 ◽  
Author(s):  
Alejandro Bertolet ◽  
Alejandro Carabe

The Microdosimetric Kinetic Model (MKM) to predict the effects of ionizing radiation on cell colonies is studied and reformulated for the case of high-linear energy transfer (LET) radiations with a low dose. When the number of radiation events happening in a subnuclear domain follows a Poisson distribution, the MKM predicts a linear-quadratic (LQ) survival curve. We show that when few events occur, as for high-LET radiations at doses lower than the mean specific energy imparted to the nucleus, zF,n, a Poisson distribution can no longer be assumed and an initial pure linear relationship between dose and survival fraction should be observed. Predictions of survival curves for combinations of high-LET and low-LET radiations are produced under two assumptions for their comparison: independent and combined action. Survival curves from previously published articles of V79 cell colonies exposed to X-rays, α particles, Ar-ions, Fe-ions, Ne-ions and mixtures of X-rays and each one of the ions are predicted according to the modified MKM. We conclude that mixtures of high-LET and low-LET radiations may enhance the effect of individual actions due to the increase of events in domains provided by the low-LET radiation. This hypothesis is only partially validated by the analyzed experiments.

1972 ◽  
Vol 52 (1) ◽  
pp. 88 ◽  
Author(s):  
E. J. Hall ◽  
W. Gross ◽  
R. F. Dvorak ◽  
A. M. Kellerer ◽  
H. H. Rossi

1934 ◽  
Vol 17 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Fred M. Uber ◽  
David R. Goddard

1. When ascospores of Neurospora tetrasperma were irradiated with 11 kv. X-rays, the single spore cultures obtained displayed a wide variety of mutated forms. 2. Control germinations of ascospores showed uniform behavior, ranging from 92–95 per cent germination. 3. The shape of the survival curves was found to be a function of the criterion of death. The following criteria were used: germination, growth, production of mature ascospores, and the production of normal perithecia. 4. The germination survival curve exhibited a rhythmic variation with dosage. Germination is not a significant criterion of death. 5. Half-survival dosages for growth and ascospore production were approximately 30,000 and 20,000 roentgens, respectively. 6. Multiple hit-to-kill relations were found on the basis of the quantum hit theory; no accurate analysis was possible. 7. The studies indicate that ascospore death does not result from a single well defined reaction, but rather from the integrated effects of several deleterious processes initiated by the radiation.


2021 ◽  
Author(s):  
Francesco G. Cordoni ◽  
Marta Missiaggia ◽  
Emanuele Scifoni ◽  
Chiara La Tessa

The current article presents the first application of the Generalized Stochastic Microdosimetric Model (GSM2) for computing explicitly a cell survival curve. GSM2 is a general probabilistic model that predicts the kinetic evolution of DNA damages taking full advantage of a microdosimetric description of a radiation energy deposition. We show that, despite the high generality and flexibility of GSM2, an explicit form for the survival fraction curve predicted by the GSM2 is achievable. We illustrate how several correction terms typically added a posteriori in existing radiobiological models to improve the prediction accuracy, are naturally included into GSM2. Among the most relevant features of the survival curve derived from GSM2 and presented in this article, is the linear-quadratic behavior at low doses and a purely linear trend for high doses. The study also identifies and discusses the connections between GSM2 and existing cell survival models, such as the Microdosimetric Kinetic Model (MKM) and the Multi-hit model. Several approximations to predict cell survival in different irradiation regimes are also introduced to include intercellular non-Poissonian behaviors.


2017 ◽  
Vol 58 (6) ◽  
pp. 803-808 ◽  
Author(s):  
Yoshiya Furusawa ◽  
Mizuho Nakano-Aoki ◽  
Yoshitaka Matsumoto ◽  
Ryoichi Hirayama ◽  
Alisa Kobayashi ◽  
...  

Abstract The quality of the sublethal damage (SLD) after irradiation with high–linear energy transfer (LET) ion beams was investigated with low-LET photons. Chinese hamster V79 cells and human squamous carcinoma SAS cells were first exposed to a priming dose of different ion beams at different LETs at the Heavy Ion Medical Accelerator in the Chiba facility. The cells were kept at room temperature and then exposed to a secondary test dose of X-rays. Based on the repair kinetics study, the surviving fraction of cells quickly increased with the repair time, and reached a plateau in 2–3 h, even when cells had received priming monoenergetic high-LET beams or spread-out Bragg peak beams as well as X-ray irradiation. The shapes of the cell survival curves from the secondary test X-rays, after repair of the damage caused by the high-LET irradiation, were similar to those obtained from cells exposed to primary X-rays only. Complete SLD repairs were observed, even when the LET of the primary ion beams was very high. These results suggest that the SLD caused by high-LET irradiation was repaired well, and likewise, the damage caused by the X-rays. In cells where the ion beam had made a direct hit in the core region in an ion track, lethal damage to the domain was produced, resulting in cell death. On the other hand, in domains that had received a glancing hit in the low-LET penumbra region, the SLD produced was completely repaired.


2016 ◽  
Vol 57 (6) ◽  
pp. 596-606 ◽  
Author(s):  
Koichi Ando ◽  
Dudley T. Goodhead

Abstract Carbon-ion radiotherapy has been used to treat more than 9000 cancer patients in the world since 1994. Spreading of the Bragg peak is necessary for carbon-ion radiotherapy, and is designed based on the linear–quadratic model that is commonly used for photon therapy. Our recent analysis using in vitro cell kills and in vivo mouse tissue reaction indicates that radiation quality affects mainly the alpha terms, but much less the beta terms, which raises the question of whether this is true in other biological systems. Survival parameters alpha and beta for 45 in vitro mammalian cell lines were obtained by colony formation after irradiation with carbon ions, fast neutrons and X-rays. Relationships between survival parameters and linear energy transfer (LET) below 100 keV/μm were obtained for 4 mammalian cell lines. Mouse skin reaction and tumor growth delay were measured after fractionated irradiation. The Fe-plot provided survival parameters of the tissue reactions. A clear separation between X-rays and high-LET radiation was observed for alpha values, but not for beta values. Alpha values/terms increased with increasing LET in any cells and tissues studied, while beta did not show a systematic change. We have found a puzzle or contradiction in common interpretations of the linear-quadratic model that causes us to question whether the model is appropriate for interpreting biological effectiveness of high-LET radiation up to 500 keV/μm, probably because of inconsistency in the concept of damage interaction. A repair saturation model proposed here was good enough to fit cell kill efficiency by radiation of wide-ranged LET. A model incorporating damage complexity and repair saturation would be suitable for heavy-ion radiotherapy.


1940 ◽  
Vol 40 (2) ◽  
pp. 162-171 ◽  
Author(s):  
D. E. Lea ◽  
R. B. Haines

Experiments on the bactericidal action of ultra-violet light have been made to determine the shape of the survival curve and the dependence upon radiation intensity of the rate of death.Bact. coli, Bact. prodigiosumand spores ofB. mesentericuswere irradiated with approximately monochromatic light of wave-length 2537 A. The survival curves obtained were exponential and the rate of death was accurately proportional to the intensity over an intensity range of 500:1.By comparing these results with data previously obtained of the action of X-rays on the same organisms it was established that one ionization produced by X-rays is as effective as some hundreds of ultra-violet quanta. This is interpreted to mean that the quantum yield in whatever chemical change leads to the loss of viability in the irradiated bacteria is, for 2537 A., between 0·01 and 0·001.


2020 ◽  
Vol 21 (21) ◽  
pp. 8151
Author(s):  
Sharda Kumari ◽  
Shibani Mukherjee ◽  
Debapriya Sinha ◽  
Salim Abdisalaam ◽  
Sunil Krishnan ◽  
...  

Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.


1996 ◽  
Vol 59 (1) ◽  
pp. 16-23 ◽  
Author(s):  
R. H. LINTON ◽  
W. H. CARTER ◽  
M. D. PIERSON ◽  
C. R. HACKNEY ◽  
J. D. EIFERT

The heat resistance of Listeria monocytogenes was determined in infant formula for all possible combinations of temperature (50, 55, and 60°C), pH level (5, 6, and 7), and NaCl concentration (0, 2, and 4%). Survival curves were fit using nonlinear regression with a Gompertz equation. The Gompertz equation was flexible enough to fit the three most commonly observed survival curves: linear curves, those with an initial lag region followed by a linear region, and sigmoidal shaped. Parameter estimates obtained by the method of nonlinear least squares were used to describe the effect(s) of different heating treatments on the lag region, death rate, and tailing region of survival curves. These estimates were further used to predict single and interactive effects of temperature, pH, and percentage of NaCl on the log of the surviving fraction (LSF) of bacteria. Interactions among these variables significantly (P ≤ .05) affected the LSF. Generally, increased pH or NaCl concentration lead to an increased LSF, whereas increased time or temperature lead to a decreased LSF. All multiple-factor interactions significantly (P ≤ .05) affected the LSF. The correlation of observed LSF versus predicted LSF (R2 = .92) indicated that the estimated Gompertz equation was in close agreement with the observation. This study demonstrated that the Gompertz equation and nonlinear regression can be used as an effective means to predict survival curve shape and response to heat of L. monocytogenes under many different environmental conditions.


2008 ◽  
Vol 99 (1) ◽  
pp. 65-72 ◽  
Author(s):  
N.N. Gómez ◽  
R.C. Venette ◽  
J.R. Gould ◽  
D.F. Winograd

AbstractPredictions of survivorship are critical to quantify the probability of establishment by an alien invasive species, but survival curves rarely distinguish between the effects of temperature on development versus senescence. We report chronological and physiological age-based survival curves for a potentially invasive noctuid, recently described as Copitarsia corruda Pogue & Simmons, collected from Peru and reared on asparagus at six constant temperatures between 9.7 and 34.5°C. Copitarsia spp. are not known to occur in the United States but are routinely intercepted at ports of entry. Chronological age survival curves differ significantly among temperatures. Survivorship at early age after hatch is greatest at lower temperatures and declines as temperature increases. Mean longevity was 220 (±13 SEM) days at 9.7°C. Physiological age survival curves constructed with developmental base temperature (7.2°C) did not correspond to those constructed with a senescence base temperature (5.9°C). A single degree day survival curve with an appropriate temperature threshold based on senescence adequately describes survivorship under non-stress temperature conditions (5.9–24.9°C).


Sign in / Sign up

Export Citation Format

Share Document