scholarly journals Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab

Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Riccardo Claudi ◽  
Eleonora Alei ◽  
Mariano Battistuzzi ◽  
Lorenzo Cocola ◽  
Marco Sergio Erculiani ◽  
...  

In a few years, space telescopes will investigate our Galaxy to detect evidence of life, mainly by observing rocky planets. In the last decade, the observation of exoplanet atmospheres and the theoretical works on biosignature gasses have experienced a considerable acceleration. The most attractive feature of the realm of exoplanets is that 40% of M dwarfs host super-Earths with a minimum mass between 1 and 30 Earth masses, orbital periods shorter than 50 days, and radii between those of the Earth and Neptune (1–3.8 R⊕). Moreover, the recent finding of cyanobacteria able to use far-red (FR) light for oxygenic photosynthesis due to the synthesis of chlorophylls d and f, extending in vivo light absorption up to 750 nm, suggests the possibility of exotic photosynthesis in planets around M dwarfs. Using innovative laboratory instrumentation, we exposed different cyanobacteria to an M dwarf star simulated irradiation, comparing their responses to those under solar and FR simulated lights. As expected, in FR light, only the cyanobacteria able to synthesize chlorophyll d and f could grow. Surprisingly, all strains, both able or unable to use FR light, grew and photosynthesized under the M dwarf generated spectrum in a similar way to the solar light and much more efficiently than under the FR one. Our findings highlight the importance of simulating both the visible and FR light components of an M dwarf spectrum to correctly evaluate the photosynthetic performances of oxygenic organisms exposed under such an exotic light condition.

2020 ◽  
Vol 639 ◽  
pp. A132 ◽  
Author(s):  
P. Bluhm ◽  
R. Luque ◽  
N. Espinoza ◽  
E. Pallé ◽  
J. A. Caballero ◽  
...  

We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384–1735–1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7− 1.1+ 1.3 g cm−3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.


2020 ◽  
Vol 498 (2) ◽  
pp. 2249-2262 ◽  
Author(s):  
Danley C Hsu ◽  
Eric B Ford ◽  
Ryan Terrien

ABSTRACT We present robust planet occurrence rates for Kepler planet candidates around M stars for planet radii Rp = 0.5–4 R⊕ and orbital periods P = 0.5–256 d using the approximate Bayesian computation technique. This work incorporates the final Kepler DR25 planet candidate catalogue and data products and augments them with updated stellar properties using Gaia DR2 and 2MASS point source catalogue. We apply a set of selection criteria to select a sample of 1746 Kepler M dwarf targets that host 89 associated planet candidates. These early-type M dwarfs and late K dwarfs were selected from cross-referenced targets using several photometric quality flags from Gaia DR2 and colour–magnitude cuts using 2MASS magnitudes. We estimate a habitable zone occurrence rate of $f_{\textrm {M,HZ}} = 0.33^{+0.10}_{-0.12}$ for planets with 0.75–1.5 R⊕ size. We caution that occurrence rate estimates for Kepler M stars are sensitive to the choice of prior due to the small sample of target stars and planet candidates. For example, we find an occurrence rate of $4.2^{+0.6}_{-0.6}$ or $8.4^{+1.2}_{-1.1}$ planets per M dwarf (integrating over Rp = 0.5–4 R⊕ and P = 0.5–256 d) for our two choices of prior. These occurrence rates are greater than those for FGK dwarf target when compared at the same range of orbital periods, but similar to occurrence rates when computed as a function of equivalent stellar insolation. Combining our result with recent studies of exoplanet architectures indicates that most, and potentially all, early-type M dwarfs harbour planetary systems.


2021 ◽  
Vol 503 (3) ◽  
pp. 3434-3448
Author(s):  
Manasvi Lingam ◽  
Abraham Loeb

ABSTRACT Aquatic biospheres reliant on oxygenic photosynthesis are expected to play an important role on Earth-like planets endowed with large-scale oceans insofar as carbon fixation (i.e. biosynthesis of organic compounds) is concerned. We investigate the properties of aquatic biospheres comprising Earth-like biota for habitable rocky planets orbiting Sun-like stars and late-type M dwarfs such as TRAPPIST-1. In particular, we estimate how these characteristics evolve with the available flux of photosynthetically active radiation (PAR) and the ambient ocean temperature (TW), the latter of which constitutes a key environmental variable. We show that many salient properties, such as the depth of the photosynthesis zone and the net primary productivity (i.e. the effective rate of carbon fixation), are sensitive to PAR flux and TW and decline substantially when the former is decreased or the latter is increased. We conclude by exploring the implications of our analysis for exoplanets around Sun-like stars and M dwarfs.


2019 ◽  
Vol 631 ◽  
pp. A125 ◽  
Author(s):  
F. Kiefer ◽  
G. Hébrard ◽  
J. Sahlmann ◽  
S. G. Sousa ◽  
T. Forveille ◽  
...  

Context. Brown dwarfs (BD) are substellar objects intermediate between planets and stars with masses of ~13–80 MJ. While isolated BDs are most likely produced by gravitational collapse in molecular clouds down to masses of a few MJ, a non-negligible fraction of low-mass companions might be formed through the planet-formation channel in protoplanetary discs. The upper mass limit of objects formed within discs is still observationally unknown, the main reason being the strong dearth of BD companions at orbital periods shorter than 10 yr, also known as the BD desert. Aims. To address this question, we aim at determining the best statistics of companions within the 10–100 MJ mass regime and located closer than ~10 au to the primary star, while minimising observation and selection bias. Methods. We made extensive use of the radial velocity (RV) surveys of northern hemisphere FGK stars within 60 pc of the Sun, performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derived the Keplerian solutions of the RV variations of 54 sources. Public astrometric data of the HIPPARCOS and Gaia missions allowed us to constrain the masses of the companions for most sources. We introduce GASTON, a new method to derive inclination combining RVs and Keplerian and astrometric excess noise from Gaia DR1. Results. We report the discovery of 12 new BD candidates. For five of them, additional astrometric data led to a revision of their mass in the M-dwarf regime. Among the seven remaining objects, four are confirmed BD companions, and three others are likely also in this mass regime. Moreover, we report the detection of 42 M-dwarfs within the range of 90 MJ–0.52 M⊙. The resulting M sin i-P distribution of BD candidates shows a clear drop in the detection rate below 80-day orbital period. Above that limit, the BD desert appears rather wet, with a uniform distribution of the M sin i. We derive a minimum BD-detection frequency around Solar-like stars of 2.0 ± 0.5%.


1998 ◽  
Vol 11 (1) ◽  
pp. 419-420
Author(s):  
David W. Latham

What is known about the masses of main-sequence stars from the analysis of binary orbits? Double-lined eclipsing binaries are the main source of very precise stellar masses and radii (e.g. Andersen 1997), contributing more than 100 determinations with better than 2% precision over the range 0.6 to 20 Mʘ. For lower-mass stars we are forced to turn to nearby systems with astrometric orbits (e.g. Henry et al. 1993). Not only is the number of good mass determinations from such systems smaller, but also the precision is generally poorer. We are approaching an era when interferometers should have a major impact by supplying good astrometric orbits for dozens of double-lined systems. Already we are beginning to see the sorts of results to expect from this (e.g. Torres et al. 1997). Figure 1. Mass vs. absolute V magnitude for eclipsing binaries (circles) and nearby astrometric binaries (squares) Figure 1 is an updated version of a diagram presented by Henry et al. (1993, their Figure 2). It shows the general run of mass determinations from about 10 Mʘ down to the substellar limit near 0.075 Mʘ. Ninety of the points in Figure 1 are for eclipsing binary masses from Andersen’s review (1991) and are plotted as open circles. The results for eclipsing binaries published since 1991 are plotted as 30 filled circles, adopting the same limit of 2% for the mass precision. In most cases the uncertainties are similar to the size of the symbols. Especially noteworthy is the pair of new points for CM Draconis (Metcalfe et al. 1996) with masses near 0.25 Mʘ. Together with the points for YY Geminorum near 0.6 Mʘ, these are the only M dwarfs that have precise mass determinations. For the most part we are forced to rely on nearby stars with astrometric orbits, to fill in the M dwarf region of the diagram. We have used filled squares in Figure 1 for 29 such systems from Henry et al. (1993), updated using 14 new parallaxes from Hipparcos and 4 from the new Yale Parallax Catalog (1995). Gliese 508 is not included, because it is now known to be a triple, while Gliese 67AB, 570BC, and 623AB are not included because there are not yet any direct measurements of the V magnitude difference for these systems.


2019 ◽  
Vol 490 (3) ◽  
pp. 4107-4120
Author(s):  
J Bentley ◽  
C G Tinney ◽  
S Sharma ◽  
D Wright

ABSTRACT We present criteria for the selection of M-dwarfs down to G < 14.5 using all-sky survey data, with a view to identifying potential M-dwarfs, to be confirmed spectroscopically by the FunnelWeb survey. Two sets of criteria were developed. The first, based on absolute magnitude in the Gaia G passband, with MG > 7.7, selects 76,392 stars, with 81.0 per cent expected to be M-dwarfs at a completeness of >97 per cent. The second is based on colour and uses Gaia, WISE, and 2MASS all-sky photometry. This criteria identifies 94,479 candidate M-dwarfs, of which between 29.4 per cent and 47.3 per cent are expected to be true M-dwarfs, and which contains 99.6 per cent of expected M-dwarfs. Both criteria were developed using synthetic galaxy model predictions, and a previously spectroscopically classified set of M- and K-dwarfs, to evaluate both M-dwarf completeness and false-positive detections (i.e. the non-M-dwarf contamination rate). Both criteria used in combination demonstrate how each excludes different sources of contamination. We therefore developed a final set of criteria that combines absolute magnitude and colour selection to identify 74,091 stars. All these sets of criteria select numbers of objects feasible for confirmation via massively multiplexed spectroscopic surveys like FunnelWeb.


2010 ◽  
Vol 6 (S276) ◽  
pp. 525-526
Author(s):  
Mario Damasso ◽  
Andrea Bernagozzi ◽  
Enzo Bertolini ◽  
Paolo Calcidese ◽  
Paolo Giacobbe ◽  
...  

AbstractSmall ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars, as recently demonstrated for example by the MEarth project. Since December 2009 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA) we are monitoring photometrically a sample of red dwarfs with accurate parallax measurements. The primary goal of this ‘pilot study’ is the characterization of the photometric microvariability of each target over a typical period of approximately 2 months. This is the preparatory step to long-term survey with an array of identical small telescopes, with kick-off in early 2011. Here we discuss the present status of the study, describing the stellar sample, and presenting the most interesting results obtained so far, including the aggressive data analysis devoted to the characterization of the variability properties of the sample and the search for transit-like signals.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 289 ◽  
Author(s):  
Serena Benatti

Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerunner for the detection of the long-awaited Sun-Earth analog system. All the achievements in this field would not have been possible without the constant development of the technology and of new methods to detect more and more challenging planets. After the consolidation of a top-level instrumentation for high-resolution spectroscopy in the visible wavelength range, a huge effort is now dedicated to reaching the same precision and accuracy in the near-infrared. Actually, observations in this range present several advantages in the search for exoplanets around M dwarfs, known to be the most favorable targets to detect possible habitable planets. They are also characterized by intense stellar activity, which hampers planet detection, but its impact on the radial velocity modulation is mitigated in the infrared. Simultaneous observations in the visible and near-infrared ranges appear to be an even more powerful technique since they provide combined and complementary information, also useful for many other exoplanetary science cases.


2016 ◽  
pp. 21-26 ◽  
Author(s):  
D. Kjurkchieva ◽  
V. Popov ◽  
D. Vasileva ◽  
N. Petrov

The paper presents light curve solutions of our observations of four new ultrashort-period eclipsing binaries with MS components. Two of them have periods almost at the upper limit (0.22 days) of the ultrashort-period binaries, while the periods of around 0.18 days of CSS J171508.5+350658 and CSS J214633.8+120016 are amongst the shortest known orbital periods. CSS J171410.0+ 445850, CSS J214633.8+120016 and CSS J224326.0+154532 are over contact binaries with fill out factors around 0.25 while CSS J171508.5+350658 is a semidetached system. The two targets with shortest periods consist of M dwarfs.


2019 ◽  
Vol 15 (9) ◽  
pp. 43
Author(s):  
Nguyễn Thành Đạt ◽  
Phan Bảo Ngọc

In this paper, we present our search for debris disks in a sample of nearby late-M dwarfs based on infrared data of the Wide Infrared Survey Explorer. Using archival data, we constructed spectral energy distributions of these targets to detect their infrared excess. We detected infrared excess only in one target. This late-M dwarf is an excellent benchmark for further study of disks around very low-mass objects.


Sign in / Sign up

Export Citation Format

Share Document