scholarly journals Occurrence rates of planets orbiting M Stars: applying ABC to Kepler DR25, Gaia DR2, and 2MASS data

2020 ◽  
Vol 498 (2) ◽  
pp. 2249-2262 ◽  
Author(s):  
Danley C Hsu ◽  
Eric B Ford ◽  
Ryan Terrien

ABSTRACT We present robust planet occurrence rates for Kepler planet candidates around M stars for planet radii Rp = 0.5–4 R⊕ and orbital periods P = 0.5–256 d using the approximate Bayesian computation technique. This work incorporates the final Kepler DR25 planet candidate catalogue and data products and augments them with updated stellar properties using Gaia DR2 and 2MASS point source catalogue. We apply a set of selection criteria to select a sample of 1746 Kepler M dwarf targets that host 89 associated planet candidates. These early-type M dwarfs and late K dwarfs were selected from cross-referenced targets using several photometric quality flags from Gaia DR2 and colour–magnitude cuts using 2MASS magnitudes. We estimate a habitable zone occurrence rate of $f_{\textrm {M,HZ}} = 0.33^{+0.10}_{-0.12}$ for planets with 0.75–1.5 R⊕ size. We caution that occurrence rate estimates for Kepler M stars are sensitive to the choice of prior due to the small sample of target stars and planet candidates. For example, we find an occurrence rate of $4.2^{+0.6}_{-0.6}$ or $8.4^{+1.2}_{-1.1}$ planets per M dwarf (integrating over Rp = 0.5–4 R⊕ and P = 0.5–256 d) for our two choices of prior. These occurrence rates are greater than those for FGK dwarf target when compared at the same range of orbital periods, but similar to occurrence rates when computed as a function of equivalent stellar insolation. Combining our result with recent studies of exoplanet architectures indicates that most, and potentially all, early-type M dwarfs harbour planetary systems.

2013 ◽  
Vol 8 (S299) ◽  
pp. 64-65
Author(s):  
Julien Rameau ◽  
Gaël Chauvin ◽  
Anne-Marie Lagrange ◽  
Philippe Delorme ◽  
Justine Lannier

AbstractWe present the results of two three-year surveys of young and nearby stars to search for wide orbit giant planets. On the one hand, we focus on early-type and massive, namely β Pictoris analogs. On the other hand, we observe late type and very low mass stars, i.e., M dwarfs. We report individual detections of new planetary mass objects. According to our deep detection performances, we derive the observed frequency of giant planets between these two classes of parent stars. We find frequency between 6 to 12% but we are not able to assess a/no correlation with the host-mass.


1996 ◽  
Vol 171 ◽  
pp. 441-441
Author(s):  
Ricardo Piorno Schiavon ◽  
Beatriz Barbuy

We compute synthetic spectra in the region around 1 μm, including the Wing-Ford band (WFB) of Iron Hydride (FeH) in the calculations. This band is known to be a good indicator of surface gravities of M stars. Employing Kurucz model atmospheres, we study the response of the intensity of the WFB to atmospheric parameters and check our results against observations of M dwarfs. This study is part of an ongoing project which aims to investigate the M dwarf-to-giant ratio in galaxies, through a population synthesis method, exploring a number of spectral indicators in the near infrared, such as the WFB, the NaI, CaII and CO near infrared features.


2010 ◽  
Vol 6 (S273) ◽  
pp. 261-264 ◽  
Author(s):  
Adam F. Kowalski ◽  
Suzanne L. Hawley ◽  
Jon A. Holtzman ◽  
John P. Wisniewski ◽  
Eric J. Hilton

AbstractM dwarfs produce explosive flare emission in the near-UV and optical continuum, and the mechanism responsible for this phenomenon is not well-understood. We present a near-UV/optical flare spectrum from the rise phase of a secondary flare, which occurred during the decay of a much larger flare. The newly formed flare emission resembles the spectrum of an early-type star, with the Balmer lines and continuum in absorption. We model this observation phenomenologically as a temperature bump (hot spot) near the photosphere of the M dwarf. The amount of heating implied by our model (ΔTphot ~ 16,000 K) is far more than predicted by chromospheric backwarming in current 1D RHD flare models (ΔTphot ~ 1200 K).


2022 ◽  
Vol 924 (1) ◽  
pp. 9
Author(s):  
Tim Hallatt ◽  
Eve J. Lee

Abstract The sub-Saturn (∼4–8 R ⊕) occurrence rate rises with orbital period out to at least ∼300 days. In this work we adopt and test the hypothesis that the decrease in their occurrence toward the star is a result of atmospheric mass loss, which can transform sub-Saturns into sub-Neptunes (≲4 R ⊕) more efficiently at shorter periods. We show that under the mass-loss hypothesis, the sub-Saturn occurrence rate can be leveraged to infer their underlying core mass function, and, by extension, that of gas giants. We determine that lognormal core mass functions peaked near ∼10–20 M ⊕ are compatible with the sub-Saturn period distribution, the distribution of observationally inferred sub-Saturn cores, and gas-accretion theories. Our theory predicts that close-in sub-Saturns should be ∼50% less common and ∼30% more massive around rapidly rotating stars; this should be directly testable for stars younger than ≲500 Myr. We also predict that the sub-Jovian desert becomes less pronounced and opens up at smaller orbital periods around M stars compared to solar-type stars (∼0.7 days versus ∼3 days). We demonstrate that exceptionally low-density sub-Saturns, “super-puffs,” can survive intense hydrodynamic escape to the present day if they are born with even larger atmospheres than they currently harbor; in this picture, Kepler 223 d began with an envelope ∼1.5× the mass of its core and is currently losing its envelope at a rate of ∼2 × 10−3 M ⊕ Myr−1. If the predictions from our theory are confirmed by observations, the core mass function we predict can also serve to constrain core formation theories of gas-rich planets.


2020 ◽  
Vol 494 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Jinhee Lee ◽  
Inseok Song ◽  
Simon Murphy

ABSTRACT We report the discovery of the oldest (∼55 Myr) mid-M type star known to host ongoing accretion. 2MASS J15460752–6258042 (2M1546, spectral type M5, 59.2 pc) shows spectroscopic signs of accretion such as strong H α, He i, and [O i] emission lines, from which we estimate an accretion rate of ∼10−10 M⊙ yr−1. Considering the clearly detected infrared excess in all WISE bands, the shape of its spectral energy distribution (SED) and its age, we believe that the star is surrounded by a transitional disc, clearly with some gas still present at inner radii. The position and kinematics of the star from Gaia DR2 and our own radial-velocity measurements suggest membership in the nearby ∼55 Myr-old Argus moving group. At only 59 pc from Earth, 2M1546 is one of the nearest accreting mid-M dwarfs, making it an ideal target for studying the upper limit on the lifetimes of gas-rich discs around low-mass stars.


Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Riccardo Claudi ◽  
Eleonora Alei ◽  
Mariano Battistuzzi ◽  
Lorenzo Cocola ◽  
Marco Sergio Erculiani ◽  
...  

In a few years, space telescopes will investigate our Galaxy to detect evidence of life, mainly by observing rocky planets. In the last decade, the observation of exoplanet atmospheres and the theoretical works on biosignature gasses have experienced a considerable acceleration. The most attractive feature of the realm of exoplanets is that 40% of M dwarfs host super-Earths with a minimum mass between 1 and 30 Earth masses, orbital periods shorter than 50 days, and radii between those of the Earth and Neptune (1–3.8 R⊕). Moreover, the recent finding of cyanobacteria able to use far-red (FR) light for oxygenic photosynthesis due to the synthesis of chlorophylls d and f, extending in vivo light absorption up to 750 nm, suggests the possibility of exotic photosynthesis in planets around M dwarfs. Using innovative laboratory instrumentation, we exposed different cyanobacteria to an M dwarf star simulated irradiation, comparing their responses to those under solar and FR simulated lights. As expected, in FR light, only the cyanobacteria able to synthesize chlorophyll d and f could grow. Surprisingly, all strains, both able or unable to use FR light, grew and photosynthesized under the M dwarf generated spectrum in a similar way to the solar light and much more efficiently than under the FR one. Our findings highlight the importance of simulating both the visible and FR light components of an M dwarf spectrum to correctly evaluate the photosynthetic performances of oxygenic organisms exposed under such an exotic light condition.


2020 ◽  
Vol 633 ◽  
pp. A130
Author(s):  
L. H. Quiroga-Nuñez ◽  
H. T. Intema ◽  
J. R. Callingham ◽  
J. Villadsen ◽  
H. J. van Langevelde ◽  
...  

Serendipitously, we rediscovered radio emission from the binary system Ross 867 (M4.5V) and Ross 868 (M3.5V) while inspecting archival Giant Metrewave Radio Telescope (GMRT) observations. The binary system consists of two M-dwarf stars that share common characteristics such as spectral type, astrometric parameters, age, and emission at infrared, optical, and X-ray frequencies. The GMRT data at 610 MHz taken on July 2011 shows that the radio emission from Ross 867 is polarized and highly variable on hour timescales with a peak flux of 10.4 ± 0.7 mJy beam−1. Additionally, after reviewing archival data from several observatories (VLA, GMRT, JVLA, and LOFAR), we confirm that although the two stars are likely coeval, only Ross 867 was detected, while Ross 868 remains undetected at radio wavelengths. As the stars have a large orbital separation, this binary stellar system provides a coeval laboratory to examine and constrain the stellar properties linked to radio activity in M dwarfs. We speculate that the observed difference in radio activity between the dwarfs could be due to vastly different magnetic field topologies or that Ross 867 has an intrinsically different dynamo.


2020 ◽  
Vol 637 ◽  
pp. A13 ◽  
Author(s):  
P. Muheki ◽  
E. W. Guenther ◽  
T. Mutabazi ◽  
E. Jurua

Context. Flares and coronal mass ejections (CMEs) are important for the evolution of the atmospheres of planets and their potential habitability, particularly for planets orbiting M stars at a distance <0.4 AU. Detections of CMEs on these stars have been sparse, and previous studies have therefore modelled their occurrence frequency by scaling up solar relations. However, because the topology and strength of the magnetic fields on M stars is different from that of the Sun, it is not obvious that this approach works well. Aims. We used a large number of high-resolution spectra to study flares, CMEs, and their dynamics of the active M dwarf star AD Leo. The results can then be used as reference for other M dwarfs. Methods. We obtained more than 2000 high-resolution spectra (R ~ 35 000) of the highly active M dwarf AD Leo, which is viewed nearly pole on. Using these data, we studied the behaviour of the spectral lines Hα, Hβ, and He I 5876 in detail and investigated asymmetric features that might be Doppler signatures of CMEs. Results. We detected numerous flares. The largest flare emitted 8.32 × 1031 erg in Hβ and 2.12 × 1032 erg in Hα. Although the spectral lines in this and other events showed a significant blue asymmetry, the velocities associated with it are far below the escape velocity. Conclusions. Although AD Leo shows a high level of flare activity, the number of CMEs is relatively low. It is thus not appropriate to use the same flare-to-CME relation for M dwarfs as for the Sun.


2019 ◽  
Vol 630 ◽  
pp. A147 ◽  
Author(s):  
Mario Flock ◽  
Neal J. Turner ◽  
Gijs D. Mulders ◽  
Yasuhiro Hasegawa ◽  
Richard P. Nelson ◽  
...  

Context. The increasing number of newly detected exoplanets at short orbital periods raises questions about their formation and migration histories. Planet formation and migration depend heavily on the structure and dynamics of protoplanetary disks. A particular puzzle that requires explanation arises from one of the key results of the Kepler mission, namely the increase in the planetary occurrence rate with orbital period up to 10 days for F, G, K and M stars. Aims. We investigate the conditions for planet formation and migration near the dust sublimation front in protostellar disks around young Sun-like stars. We are especially interested in determining the positions where the drift of pebbles would be stopped, and where the migration of Earth-like planets and super-Earths would be halted. Methods. For this analysis we use iterative 2D radiation hydrostatic disk models which include irradiation by the star, and dust sublimation and deposition depending on the local temperature and vapor pressure. Results. Our results show the temperature and density structure of a gas and dust disk around a young Sun-like star. We perform a parameter study by varying the magnetized turbulence onset temperature, the accretion stress, the dust mass fraction, and the mass accretion rate. Our models feature a gas-only inner disk, a silicate sublimation front and dust rim starting at around 0.08 au, an ionization transition zone with a corresponding density jump, and a pressure maximum which acts as a pebble trap at around 0.12 au. Migration torque maps show Earth- and super-Earth-mass planets halt in our model disks at orbital periods ranging from 10 to 22 days. Conclusions. Such periods are in good agreement with both the inferred location of the innermost planets in multiplanetary systems, and the break in planet occurrence rates from the Kepler sample at 10 days. In particular, models with small grains depleted produce a trap located at a 10-day orbital period, while models with a higher abundance of small grains present a trap at around a 17-day orbital period. The snow line lies at 1.6 au, near where the occurrence rate of the giant planets peaks. We conclude that the dust sublimation zone is crucial for forming close-in planets, especially when considering tightly packed super-Earth systems.


2019 ◽  
Vol 631 ◽  
pp. A125 ◽  
Author(s):  
F. Kiefer ◽  
G. Hébrard ◽  
J. Sahlmann ◽  
S. G. Sousa ◽  
T. Forveille ◽  
...  

Context. Brown dwarfs (BD) are substellar objects intermediate between planets and stars with masses of ~13–80 MJ. While isolated BDs are most likely produced by gravitational collapse in molecular clouds down to masses of a few MJ, a non-negligible fraction of low-mass companions might be formed through the planet-formation channel in protoplanetary discs. The upper mass limit of objects formed within discs is still observationally unknown, the main reason being the strong dearth of BD companions at orbital periods shorter than 10 yr, also known as the BD desert. Aims. To address this question, we aim at determining the best statistics of companions within the 10–100 MJ mass regime and located closer than ~10 au to the primary star, while minimising observation and selection bias. Methods. We made extensive use of the radial velocity (RV) surveys of northern hemisphere FGK stars within 60 pc of the Sun, performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. We derived the Keplerian solutions of the RV variations of 54 sources. Public astrometric data of the HIPPARCOS and Gaia missions allowed us to constrain the masses of the companions for most sources. We introduce GASTON, a new method to derive inclination combining RVs and Keplerian and astrometric excess noise from Gaia DR1. Results. We report the discovery of 12 new BD candidates. For five of them, additional astrometric data led to a revision of their mass in the M-dwarf regime. Among the seven remaining objects, four are confirmed BD companions, and three others are likely also in this mass regime. Moreover, we report the detection of 42 M-dwarfs within the range of 90 MJ–0.52 M⊙. The resulting M sin i-P distribution of BD candidates shows a clear drop in the detection rate below 80-day orbital period. Above that limit, the BD desert appears rather wet, with a uniform distribution of the M sin i. We derive a minimum BD-detection frequency around Solar-like stars of 2.0 ± 0.5%.


Sign in / Sign up

Export Citation Format

Share Document