scholarly journals A Multi-Scale and Multi-Level Fusion Approach for Deep Learning-Based Liver Lesion Diagnosis in Magnetic Resonance Images with Visual Explanation

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 582
Author(s):  
Yuchai Wan ◽  
Zhongshu Zheng ◽  
Ran Liu ◽  
Zheng Zhu ◽  
Hongen Zhou ◽  
...  

Many computer-aided diagnosis methods, especially ones with deep learning strategies, of liver cancers based on medical images have been proposed. However, most of such methods analyze the images under only one scale, and the deep learning models are always unexplainable. In this paper, we propose a deep learning-based multi-scale and multi-level fusing approach of CNNs for liver lesion diagnosis on magnetic resonance images, termed as MMF-CNN. We introduce a multi-scale representation strategy to encode both the local and semi-local complementary information of the images. To take advantage of the complementary information of multi-scale representations, we propose a multi-level fusion method to combine the information of both the feature level and the decision level hierarchically and generate a robust diagnostic classifier based on deep learning. We further explore the explanation of the diagnosis decision of the deep neural network through visualizing the areas of interest of the network. A new scoring method is designed to evaluate whether the attention maps can highlight the relevant radiological features. The explanation and visualization make the decision-making process of the deep neural network transparent for the clinicians. We apply our proposed approach to various state-of-the-art deep learning architectures. The experimental results demonstrate the effectiveness of our approach.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shota Ito ◽  
Yuichi Mine ◽  
Yuki Yoshimi ◽  
Saori Takeda ◽  
Akari Tanaka ◽  
...  

AbstractTemporomandibular disorders are typically accompanied by a number of clinical manifestations that involve pain and dysfunction of the masticatory muscles and temporomandibular joint. The most important subgroup of articular abnormalities in patients with temporomandibular disorders includes patients with different forms of articular disc displacement and deformation. Here, we propose a fully automated articular disc detection and segmentation system to support the diagnosis of temporomandibular disorder on magnetic resonance imaging. This system uses deep learning-based semantic segmentation approaches. The study included a total of 217 magnetic resonance images from 10 patients with anterior displacement of the articular disc and 10 healthy control subjects with normal articular discs. These images were used to evaluate three deep learning-based semantic segmentation approaches: our proposed convolutional neural network encoder-decoder named 3DiscNet (Detection for Displaced articular DISC using convolutional neural NETwork), U-Net, and SegNet-Basic. Of the three algorithms, 3DiscNet and SegNet-Basic showed comparably good metrics (Dice coefficient, sensitivity, and positive predictive value). This study provides a proof-of-concept for a fully automated deep learning-based segmentation methodology for articular discs on magnetic resonance images, and obtained promising initial results, indicating that the method could potentially be used in clinical practice for the assessment of temporomandibular disorders.


2020 ◽  
Author(s):  
Bo Gong ◽  
Daji Ergu ◽  
Ying Cai ◽  
Bo Ma

Abstract Background: Plant phenotyping by deep learning has increased attention. The detection of wheat head in the field is an important mission for estimating the characteristics of wheat heads such as the density, health, maturity, and presence or absence of awns. Traditional wheat head detection methods have problems such as low efficiency, strong subjectivity, and poor accuracy. However, with the development of deep learning theory and the iteration of computer hardware, the accuracy of object detection method using deep neural networks has been greatly improved. Therefore, using a deep neural network method to detect wheat heads in images has a certain value. Results: In this paper, a method of wheat head detection based on deep neural network is proposed. Firstly, for improving the backbone network part, two SPP networks are introduced to enhance the ability of feature learning and increase the receptive field of the convolutional network. Secondly, the top-down and bottom-up feature fusion strategies are applied to obtain multi-level features. Finally, we use Yolov3's head structures to predict the bounding box of object. The results show that our proposed detection method for wheat head has higher accuracy and speed. The mean average precision of our method is 94.5%, and the detection speed of our proposed method is 88fps. Conclusion: The proposed deep neural network can accurately and quickly detector the wheat head in the image which is based on Yolov4. In addition, the training dataset is a wheat head dataset with accurate annotations and rich varieties, which makes the proposed method more robust and has a wide range of application values. The proposed detector is also more suitable for wheat detection task, with the deeper backbone networks. The use of spatial pyramid pooling (SPP) and multi-level features fusion, which all play a crucial role in improving detector performance. Our method provides beneficial help for the breeding of wheat


Sign in / Sign up

Export Citation Format

Share Document