scholarly journals Physiological Doses of Hydroxytyrosol Modulate Gene Expression in Skeletal Muscle of Exercised Rats

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1393
Author(s):  
Rafael A. Casuso ◽  
Saad Al Fazazi ◽  
Julio Plaza-Díaz ◽  
Francisco J. Ruiz-Ojeda ◽  
Ascensión Rueda-Robles ◽  
...  

We tested whether physiological doses of hydroxytyrosol (HT) may alter the mRNA transcription of key metabolic genes in exercised skeletal muscle. Two groups of exercise-trained Wistar rats, HTlow and HTmid, were supplemented with 0.31 and 4.61 mg/kg/d of HT, respectively, for 10 weeks. Another two groups of rats were not supplemented with HT; one remained sedentary and the other one was exercised. After the experimental period, the soleus muscle was removed for qRT-PCR and western blot analysis. The consumption of 4.61 mg/kg/d of HT during exercise increased the mRNA expression of important metabolic proteins. Specifically, 4.61 mg/kg/d of HT may upregulate long-chain fatty acid oxidation, lactate, and glucose oxidation as well as mitochondrial Krebs cycle in trained skeletal muscle. However, a 4.61 mg/kg/d of HT may alter protein translation, as in spite of the increment showed by CD36 and GLUT4 at the mRNA level this was not translated to higher protein content.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Tsunehisa Yamamoto ◽  
Elizabeth Pruzinsky ◽  
Kirill Batmanov ◽  
Daniel P Kelly

The nuclear receptors, peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and their co-regulator PPARγ coactivator-1α (PGC-1α), control postnatal cardiac mitochondrial biogenesis and energy metabolism. During the development of heart failure (HF), the activity of PGC-1/PPAR/ERR is reduced resulting in diminished capacity for fatty acid oxidation (FAO) and ATP production potentially contributing to an “energy-starved” state that contributes to progression of HF. Receptor-Interacting protein 140 (RIP140) serves as a co-repressor of PGC-1/PPAR/ERR in skeletal muscle and adipose tissue. We hypothesized that RIP140 represses cardiac energy metabolism in the normal and failing heart. Accordingly, we targeted Nrip1 (encoding RIP140) using a muscle creatinine kinase (MCK)-driven Cre recombinase to generate striated muscle-specific RIP140 knockout (msRIP140 KO) mice. msRIP140 KO mice appeared normal at baseline with no difference in survival or cardiac systolic function compared to littermate controls. RNA-sequence analysis demonstrated that the expression of genes involved in a wide array of mitochondrial energy metabolic pathways including FAO, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and branched-chain amino acid (BCAA) degradation pathways were upregulated in msRIP140 KO ventricles, and in msRIP140 KO skeletal muscle. msRIP140 KO mice exhibited significantly less cardiac hypertrophy and diastolic dysfunction in response to chronic pressure overload. Next, cardiac-specific (cs) RIP140 KO mice were generated and subjected to transverse aortic constriction/apical myocardial infarction surgery (TAC/MI), an established HF model. csRIP140 KO mice exhibited less cardiac remodeling and systolic dysfunction compared to littermate controls, along with less downregulation of metabolic genes and induction of cardiac stress ( Nppa and Nppb ) and fibrosis response markers ( Tgfb2 and Col3a1 ). We conclude that RIP140 serves as a global co-repressor of cardiac energy metabolic genes in the adult heart and that modulation of RIP140 activity could prove to be a novel therapeutic approach for HF.


1983 ◽  
Vol 214 (1) ◽  
pp. 21-28 ◽  
Author(s):  
J D McGarry ◽  
S E Mills ◽  
C S Long ◽  
D W Foster

The requirement for carnitine and the malonyl-CoA sensitivity of carnitine palmitoyl-transferase I (EC 2.3.1.21) were measured in isolated mitochondria from eight tissues of animal or human origin using fixed concentrations of palmitoyl-CoA (50 microM) and albumin (147 microM). The Km for carnitine spanned a 20-fold range, rising from about 35 microM in adult rat and human foetal liver to 700 microM in dog heart. Intermediate values of increasing magnitude were found for rat heart, guinea pig liver and skeletal muscle of rat, dog and man. Conversely, the concentration of malonyl-CoA required for 50% suppression of enzyme activity fell from the region of 2-3 microM in human and rat liver to only 20 nM in tissues displaying the highest Km for carnitine. Thus, the requirement for carnitine and sensitivity to malonyl-CoA appeared to be inversely related. The Km of carnitine palmitoyltransferase I for palmitoyl-CoA was similar in tissues showing large differences in requirement for carnitine. Other experiments established that, in addition to liver, heart and skeletal muscle of fed rats contain significant quantities of malonyl-CoA and that in all three tissues the level falls with starvation. Although its intracellular location in heart and skeletal muscle is not known, the possibility is raised that malonyl-CoA (or a related compound) could, under certain circumstances, interact with carnitine palmitoyltransferase I in non-hepatic tissues and thereby exert control over long chain fatty acid oxidation.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Yi-Huan Chen ◽  
Yi-Ju Wu ◽  
Wei-Cheng Chen ◽  
Tzong-Shyuan Lee ◽  
Tsui-Chun Tsou ◽  
...  

Abstract Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer frequently leached out from polyvinyl chloride (PVC) products and is quickly metabolized to its monoester equivalent mono(2-ethylhexyl) phthalate (MEHP) once enters organisms. Exposure to DEHP/MEHP through food chain intake has been shown to modified metabolism but its effect on the development of metabolic myopathy of skeletal muscle (SKM) has not been revealed so far. Here, we found that MEHP repressed myogenic terminal differentiation of proliferating myoblasts (PMB) and confluent myoblasts (CMB) but had weak effect on this process once it had been initiated. The transition of mitochondria (MITO) morphology from high efficient filamentary network to low efficient vesicles was triggered by MEHP, implying its negative effects on MITO functions. The impaired MITO functions was further demonstrated by reduced MITO DNA (mtDNA) level and SDH enzyme activity as well as highly increased reactive oxygen species (ROS) in cells after MEHP treatment. The expression of metabolic genes, including PDK4, CPT1b, UCP2, and HO1, was highly increased by MEHP and the promoters of PDK4 and CPT1b were also activated by MEHP. Additionally, the stability of some subunits in the oxidative phosphorylation system (OXPHOS) complexes was found to be reduced by MEHP, implying defective oxidative metabolism in MITO and which was confirmed by repressed palmitic acid oxidation in MEHP-treated cells. Besides, MEHP also blocked insulin-induced glucose uptake. Taken together, our results suggest that MEHP is inhibitory to myogenesis and is harmful to MITO functions in SKM, so its exposure should be avoided or limited.


2008 ◽  
Vol 194 (4) ◽  
pp. 293-309 ◽  
Author(s):  
G. P. Holloway ◽  
J. J. F. P. Luiken ◽  
J. F. C. Glatz ◽  
L. L. Spriet ◽  
A. Bonen

Sign in / Sign up

Export Citation Format

Share Document