scholarly journals Dispersion Stability and Lubrication Performance Correlation of Vegetable Oil-In-Water Emulsions with Nanoparticle-Shielded Oil Droplets

Lubricants ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 55 ◽  
Author(s):  
Reza Taheri ◽  
Buyung Kosasih ◽  
Hongtao Zhu ◽  
Anh Tieu
2021 ◽  
pp. 1-27
Author(s):  
Reza Taheri ◽  
P. Buyung Kosasih ◽  
Hongtao Zhu

Abstract Vegetable oil-in-water (VO/W) emulsions are common cold rolling lubricants. However, maintaining the required dispersion for polar oil droplets for consistent lubrication and proper surface self-cleaning after rolling remains a practical challenge. In this study, titanium silicate TiO2-SiO2 nanoparticle (NP) stabilised soybean oil emulsions are produced and NPs function as dispersant, lubrication enhancer, and detergent agent to clean up oil residue are explored. Cold rolling of SS316 reveals a threshold of NPs wt %, at which stably dispersed oil droplets improve tribology and lower the rolling parameters relative to that without or at high wt % of NPs. Cleaner as-rolled strips are also obtained with NPs. Favourable results are attributed to formation of NP-coating layers on oil droplets which enhances dispersion, optimises plate-out while keeping adequate wetting, and provides a 3-body abrasive rolling as opposed to 2-body adhesion without NPs. A model of sliding-rolling lubrication in cold rolling is also discussed.


2020 ◽  
Author(s):  
Saranya Pullanchery ◽  
Sergey Kulik ◽  
halil okur ◽  
Hilton. B. de Aguiar ◽  
Sylvie Roke

Hydrophobic oil droplets, particles and air bubbles can be dispersed in water as kinetically stabilized dispersions. It has been established since the 19th century that such objects harbor a negative electrostatic potential roughly twice larger than the thermal energy. The source of this charge continues to be one of the core observations in relation to hydrophobicity and its molecular explanation is still debated. What is clear though, is that the stabilizing interaction in these systems is understood in terms of electrostatic repulsion via DLVO theory. Recent work [Carpenter et al., PNAS 116 (2019) 9214] has added another element into the discussion, reporting the creation of bare near-zero charged droplets of oil in water that are stable for several days. Key to the creation of the droplets is a rigorous glassware cleaning procedure. Here, we investigate these conclusions and show that the cleaning procedure of glassware has no influence on the electrophoretic mobility of the droplets, that oil droplets with near-zero charge are unstable, and provide an alternative possible explanation for the observations involving glass surface chemistry.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Aiman Y ◽  
Syahrullail S. ◽  
S. M. Azhar ◽  
Ummikalsom A. ◽  
Kameil A. H.

Palm stearin has high biodegradability and produces low pollution to the environment. This oil can be improved based on its natural behaviour and can be an alternative to replace the widely used commercial mineral oils. Thus, the negative impact towards the environment can be reduced. This research is to study the performance of two type lubricants which is vegetable oil (Palm Stearin) and commercial mineral engine oil (CMEO). The sample will be tested using pin on disc tribotester machine that follows ASTM G99 standard. The materials used for this experiment are pure aluminium pin (A110) with spherical head and stainless steel disc (SKD11) with four grooves. The experiment will take one hour to finish one test. The conditions that were considered before the beginning of the experiment are constant loads of 1kg, varies sliding speed of 1.5 m/s to 3.5 m/s with incremental 1 m/s and 2.5 ml volume of oil. The wear rate and coefficient of friction can be determined in this experiment. From the result obtained, the coefficient of friction (COF) of palm stearin is 45% higher than CMEO and also the trend for both oils are inversely proportional with sliding speed. Besides that, the wear rate of palm stearin is also bigger than CMEO, which shows that CMEO has better lubrication performance when compared to palm stearin. The additives is needed for palm stearin so that the lubrication performance can compete with the CMEO. From the result also, vegetable oil shows a potential to be a commercial lubricant when the deficiencies can be overcome.


1995 ◽  
Vol 1995 (1) ◽  
pp. 219-227 ◽  
Author(s):  
James R. Bragg ◽  
Edward H. Owens

ABSTRACT Interactions of fine mineral particles with oil stranded on shorelines following spills has been shown to be an important natural cleansing process, capable of accelerating oil removal in most environments, and particularly in low energy environments where wave action and abrasion are negligible. This process involves formation of solids-stabilized oil-in-water emulsions by flocculation of micron-sized mineral fines with oil droplets in the presence of water containing ions (such as sea water). Once flocculated, the oil droplets do not coalesce, and the oil no longer adheres strongly to shoreline sediments, facilitating its removal and dispersion by waves and tidal currents. The importance of the flocculation process to the rate of oil removal from sediments, the conditions needed for the process to occur, and the properties of the resulting floe have been studied in detail for the Exxon Valdez spill. Its potential role in shoreline cleansing also has been studied for other recent spills: Metula (1974, Chile), Arrow (1970, Nova Scotia), BIOS test spill (1981, Cape Hatt, Northwest Territories), Nosac Forest (1993, Tacoma, Washington), and Fred Bouchard (1993, Tampa, Florida). This paper summarizes the various laboratory and field studies and discusses the findings within the contexts of natural shoreline cleansing, and the use of certain treatment techniques.


2013 ◽  
Vol 54 (2) ◽  
pp. 1712-1721 ◽  
Author(s):  
Benjamin Zeeb ◽  
Johanna Beicht ◽  
Thomas Eisele ◽  
Monika Gibis ◽  
Lutz Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document