scholarly journals An Overview on the Tribological Performance of Titanium Alloys with Surface Modifications for Biomedical Applications

Lubricants ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 65 ◽  
Author(s):  
Kaur ◽  
Ghadirinejad ◽  
Oskouei

The need for metallic biomaterials will always remain high with their growing demand in joint replacement in the aging population. This creates need for the market and researchers to focus on the development and advancement of the biometals. Desirable characteristics such as excellent biocompatibility, high strength, comparable elastic modulus with bones, good corrosion resistance, and high wear resistance are the significant issues to address for medical implants, particularly load-bearing orthopedic implants. The widespread use of titanium alloys in biomedical implants create a big demand to identify and assess the behavior and performance of these alloys when used in the human body. Being the most commonly used metal alloy in the fabrication of medical implants, mainly because of its good biocompatibility and corrosion resistance together with its high strength to weight ratio, the tribological behavior of these alloys have always been an important subject for study. Titanium alloys with improved wear resistance will of course enhance the longevity of implants in the body. In this paper, tribological performance of titanium alloys (medical grades) is reviewed. Various methods of surface modifications employed for titanium alloys are also discussed in the context of wear behavior.

2011 ◽  
Vol 299-300 ◽  
pp. 663-666 ◽  
Author(s):  
Ping Shi ◽  
Xue Dong Han

Magnesium alloys are being used as structural components in industry because of their high strength to weight ratio. But their high electrochemical activity and poor corrosion resistance limited their applications. Therefore, surface modifications are needed for protection purpose. This paper studied the anodic micro-arc oxidation and electroless Ni-P plating surface modifications on AZ80 magnesium alloy. The SEM, XRD and EDS were used to characterize the surface coating. It shows that a micro-porous MgO layer with the pores size 5 – 20 μm was fabricated on the bare magnesium alloy. The nodule Ni-P deposition could be prepared on the out layer of MgO with Ni/P atomic ratio being 1.4. The pores in MgO layer could be sealed by the following Ni-P deposition. Therefore the corrosion resistance of the magnesium alloy could be further improved.


2019 ◽  
Vol 58 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Naiming Lin ◽  
Ruizhen Xie ◽  
Jiaojuan Zou ◽  
Jianfeng Qin ◽  
Yating Wang ◽  
...  

AbstractTitanium (Ti) and its alloys have been extensively applied in various fields of chemical industry, marine, aerospace and biomedical devices because of a specific combination of properties such as high strength to weight ratio, exceptional corrosion resistance and excellent biocompatibility. However, friction and wear, corrosion which usually occur on the surfaces of Ti-base components can lead to degradation in both properties and performance. Thermal oxidation (TO) of titanium and its alloys under certain conditions can accomplish significant improvements both in wear resistance and corrosion resistance, without special requirements for substrate geometries. In this review, the studies and applications of TO process in surface damage mitigation titanium and its alloys were reviewed and summarized.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 382
Author(s):  
Xinge Zhang ◽  
Qing Sang ◽  
Zhenan Ren ◽  
Guofa Li

Aluminum and aluminum alloys have the advantage of a high strength-to-weight ratio, but their low hardness and poor wear resistance often cause wear damage. In the present study, the cladding layer was prepared using argon-shielded arc cladding of CuZn40-WC powders which were pre-coated on a pure aluminum substrate. The effects of WC proportion on the morphology, microstructure, and properties of cladding layers were investigated in detail. The results indicated that the optimal WC proportion in CuZn40-WC powders was 60 wt.%. With the increase of WC proportion, although the morphology of the cladding layer became slightly worse, the surface quality of the cladding layer was acceptable for industrial application until the WC proportion was 80 wt.%. Meanwhile, the top width and maximum depth of the cladding layer decreased. The maximum microhardness and optimal wear resistance of the cladding layer were 4.5 and 2.5 times that of the aluminum substrate, respectively. The increased microhardness and wear resistance were mainly attributed to the formation of Al4W in the cladding layer. The wear scar of the high wear resistance specimen was smoother and some bulk Al4W compounds were clearly observed on the wear surface.


Alloy Digest ◽  
2000 ◽  
Vol 49 (11) ◽  

Abstract Allegheny Ludlum CP chemically pure titanium alloys feature low density and high strength-to-weight ratio. They are suitable for many corrosive chemical environments, including oxidizing chloride solutions, seawater, and chlorine-based bleaches. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming and joining. Filing Code: TI-115. Producer or source: Allegheny Ludlum Corporation. Originally published September 2000, corrected November 2000.


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Tungum alloy combines an unusually high strength-to-weight ratio, with ductility, excellent corrosion resistance, and good fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-806. Producer or source: Tungum Ltd.


Alloy Digest ◽  
1997 ◽  
Vol 46 (9) ◽  

Abstract Sandvik Ti-3Al-2.5V Grade 9 titanium-aluminum alloy offers excellent corrosion resistance, especially to chloride media, and has a high strength-to-weight ratio, which is especially suitable for use in aerospace applications. Tubing can be produced having a CSR (contractile strain ratio) that enhances the fatigue endurance limit. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as fatigue. It also includes information on corrosion resistance as well as forming, machining, and joining. Filing Code: TI-109. Producer or source: Sandvik.


Alloy Digest ◽  
1954 ◽  
Vol 3 (8) ◽  

Abstract Donegal DC-50 is a precipitation hardening stainless steel having high strength-weight ratio. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SS-17. Producer or source: Donegal Manufacturing Corporation.


2020 ◽  
Vol 321 ◽  
pp. 05006
Author(s):  
Florian Brunke ◽  
Carsten Siemers ◽  
Joachim Rösler

Due to their outstanding mechanical properties, excellent corrosion resistance and biocompatibility titanium and titanium alloys are the first choice for medical engineering products. Alloys currently used for implant applications are Ti-6Al-4V (ELI) and Ti-6Al-7Nb. Both alloys belong to the class of (α+β)-alloys and contain aluminium as an alloying element. Aluminium is cytotoxic and can cause breast cancer. In addition, the stiffness of (α+β)-alloys is relatively high which can lead to stress shielding, bone degradation and implant loss. For this reason, second-generation titanium alloys like Ti-15Mo (solute-lean metastable β-alloy) and Ti-13Nb-13Zr (β-rich (α+β)-alloy) have been developed. However, their application in medical implants is limited due to a relatively low strength. Therefore, in the present study, the mechanical properties of Ti-15Mo and Ti-13Nb-13Zr have been optimised by thermomechanical treatments to achieve high strengths combined with low stiffnesses. Different phase compositions have been used, namely, α-, β- and ω-phase in Ti-15Mo and α-, β- and αʺ-phase in Ti-13Nb-13Zr. For Ti-15Mo, the required mechanical properties’ combination could not be achieved whereas Ti-13Nb-13Zr showed high strength and a low Young’s modulus after a dedicated thermo-mechanical treatment. This makes the latter alloy a good option for replacing the (α+β)-alloys in implant applications in the future.


Author(s):  
VIJAY KUMAR MEENA ◽  
PARVEEN KALRA ◽  
RAVINDRA KUMAR SINHA

Additive manufacturing (AM) of titanium (Ti) alloys has always fascinated researchers owing to its high strength to weight ratio, biocompatibility, and anticorrosive properties, making Ti alloy an ideal candidate for medical applications. The aim of this paper is to optimize the AM parameters, such as Laser Power (LP), Laser Scan Speed (LSS), and Hatch Space (HS), using Analysis of Variance (ANOVA) and Grey Relational analysis (GRA) for mechanical and surface characteristics like hardness, surface roughness, and contact angle, of Ti6Al4V ELI considering medical implant applications. The input parameters are optimized to have optimum hardness, surface roughness and hydrophilicity required for medical implants.


Author(s):  
Annayath Maqbool ◽  
Noor Zaman Khan ◽  
Arshad Noor Siddiquee

Abstract The use of lighter materials is one of the efficient means to mitigate the increasing demands on fuel resources, reduce CO2 emissions. Mg is one of the lightest material available and possesses exciting range of properties such as low density and high strength to weight ratio. Despite such exciting properties, the applications of Mg and its alloys were very limited in aerospace, automotive and biomedical industries but recently the application is picking-up. The restricted application is attributed to anisotropy, poor corrosive resistance and inflammability of Mg. The current review addresses the barriers limiting the widespread application of Mg based materials. Furthermore, the mitigation of the problems of anisotropy, poor corrosion resistance, ductility and inflammability of Mg are critically reviewed. The findings of this research provide insights of the processing techniques, properties and how to address the potential barriers of limited applications. The review paper will assist and motivate the researchers to ponder and overcome numerous problems related to Mg and its alloys by understanding the importance of each problem discussed in this review. An attempt has also been made to arrange research status on issues and the mitigation thereof with respect to Mg and its alloys as single reference point.


Sign in / Sign up

Export Citation Format

Share Document