scholarly journals Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles

Materials ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 940 ◽  
Author(s):  
Gregory Marslin ◽  
Karthik Siram ◽  
Qaisar Maqbool ◽  
Rajendran Selvakesavan ◽  
Dariusz Kruszka ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 806 ◽  
Author(s):  
Gregory Marslin ◽  
Karthik Siram ◽  
Rajendran Selvakesavan ◽  
Dariusz Kruszka ◽  
Piotr Kachlicki ◽  
...  

The authors have overlooked a few mistakes when rearranging the Table 1 and Table 2 and references at the final stages, which were carried-over to the published version of the review [...]


Author(s):  
Anikate Sood ◽  
Shweta Agarwal

Nanotechnology is the most sought field in biomedical research. Metallic nanoparticles have wide applications in the medical field and have gained the attention of various researchers for advanced research for their application in pharmaceutical field. A variety of metallic nanoparticles like gold, silver, platinum, palladium, copper and zinc have been developed so far. There are different methods to synthesize metallic nanoparticles like chemical, physical, and green synthesis methods. Chemical and physical approaches suffer from certain drawbacks whereas green synthesis is emerging as a nontoxic and eco-friendly approach in production of metallic nanoparticles. Green synthesis is further divided into different approaches like synthesis via bacteria, fungi, algae, and plants. These approaches have their own advantages and disadvantages. In this article, we have described various metallic nanoparticles, different modes of green synthesis and brief description about different metabolites present in plant that act as reducing agents in green synthesis of metallic nanoparticles. 


2021 ◽  
Author(s):  
Pranali Kurhade ◽  
Shyam Kodape ◽  
Rohit Choudhury

2020 ◽  
Vol 9 (1) ◽  
pp. 283-293
Author(s):  
Milad Torabfam ◽  
Meral Yüce

AbstractGreen synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. This study describes the practical synthesis of silver nanoparticles (AgNPs) through the reduction of silver nitrate solution using an algal source, Chlorella vulgaris, as the reducing as well as the stabilizing agent. The energy required for this synthesis was supplied by microwave radiation. The ultraviolet-visible spectroscopy exhibited a single peak related to the surface plasmon absorbance of AgNPs at 431 nm. The AgNPs with high stability (a zeta potential of −17 mV), hydrodynamic size distribution of 1–50 nm, and mostly spherical shape were obtained through a 10 min process. Fourier transform infrared spectroscopy analysis revealed that several functional groups, including carbonyl groups of C. vulgaris, play a significant role in the formation of functional NPs. Antibacterial features of the produced AgNPs were verified against those of Salmonella enterica subsp. enterica serovar typhimurium and Staphylococcus aureus, demonstrating a considerable growth inhibition at increasing concentrations of the NPs. As a result, the formed AgNPs can be used as a promising agent against bacterial diseases.


2020 ◽  
Vol 25 ◽  
pp. e00427 ◽  
Author(s):  
Anirudh Singh ◽  
Pavan Kumar Gautam ◽  
Arushi Verma ◽  
Vishal Singh ◽  
Pingali M. Shivapriya ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 720 ◽  
Author(s):  
Galina Gayda ◽  
Olha Demkiv ◽  
Nataliya Stasyuk ◽  
Roman Serkiz ◽  
Maksym Lootsik ◽  
...  

Novel nanomaterials, including metallic nanoparticles obtained via green synthesis (gNPs), have a great potential for application in biotechnology, industry and medicine. The special role of gNPs is related to antibacterial agents, fluorescent markers and carriers for drug delivery. However, application of gNPs for construction of amperometric biosensors (ABSs) is not well documented. The aim of the current research was to study potential advantages of using gNPs in biosensorics. The extracellular metabolites of the yeast Ogataea polymorpha were used as reducing agents for obtaining gNPs from the corresponding inorganic ions. Several gNPs were synthesized, characterized and tested as enzyme carriers on the surface of graphite electrodes (GEs). The most effective were Pd-based gNPs (gPdNPs), and these were studied further and applied for construction of laccase- and alcohol oxidase (AO)-based ABSs. AO/GE, AO-gPdNPs/GE, laccase/GE and laccase-gPdNPs/GE were obtained, and their analytical characteristics were studied. Both gPdNPs-modified ABSs were found to have broader linear ranges and higher storage stabilities than control electrodes, although they are less sensitive toward corresponding substrates. We thus conclude that gPdNPs may be promising for construction of ABSs for enzymes with very high affinities to their substrates.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Оrest Kuntyi ◽  
Galyna Zozulya ◽  
Andriy Kytsya

The main features of the “green” synthesis of metallic nanoparticles (MNPs) by the sonoelectrochemical methods are manufacturability, environmental friendliness, and the possibility of controlling the geometry of the forming particles. The electrochemical reduction technique allows efficiently designing the metal nanoparticles and provides the control of the content of components of bimetallic nanoparticles, as well as minimizing the number of precursors in working solutions. Due to the generation of turbulence, microjets, and shock waves, ultrasound increases mass transfer and formation of radicals in aqueous solutions and, accordingly, accelerates the processes of nucleation and growth of MNPs. Therefore, this hybrid method, which combines electrolysis and ultrasound, has attracted the interest of researchers in the last two decades as one of the most promising techniques. The present work presents a short analysis of the reference literature on sonoelectrochemical synthesis of metallic and bimetallic nanoparticles. The main factors influencing the geometry of nanoparticles and their size distribution are analyzed. The use of pulsed ultrasound and pulsed current supply during sonoelectrochemical synthesis is especially effective in designing MNPs. Emphasis is placed on the role of surfactants in the formation of MNPs and sacrificial anodes in providing the algorithm: “anodic dissolution-electrochemical reduction of metal-nucleation and formation of МNPs.” It is noted that ultrasound allows synthesizing the MNPs and M1M2NPs during the galvanic replacement, and an analogy of the formation of nanoparticles by sonogalvanic replacement and sonoelectrochemical method is shown.


2021 ◽  
Vol 10 ◽  
Author(s):  
Venkata Subbaiah Kotakadi ◽  
Bhulakshmi Kolapalli ◽  
Susmila Aparna Gaddam ◽  
Sai Gopal Divi Venkata Ramana

Background: There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as chemistry, catalysis, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques where the chemicals used are quite often toxic and flammable. Objective: In the present study, we described a simple, cost effective and environmentally-friendly technique for green synthesis of silver and iron nanoparticles by using the aqueous extract of leafy vegetable Amaranthus viridis as a reducing agent. Methods: The silver and Iron nanoparticles (Av-AgNPs, Av-IONPs) were characterized by different spectral methods. The surface Plasmon resonance spectrums of Av-AgNPs, Av-IONPs were recorded at 422nm and 261nm. The Scanning electron microscopy (SEM) analysis reveals that the Av-AgNPs, Av-IONPs are roughly spherical in shape. Energy dispersive absorption spectroscopy (EDAX) of biosynthesized Av-AgNPs, Av-IONPs indicates the reduction of silver ions to elemental silver and iron ions to elemental iron. Results: The particle size analysis of Av-AgNPs and Av-IONPs was carried out by Dynamic light scattering (DLS) method the results reveal that both Av-AgNPs and Av-IONPs were polydispered in nature. The average particle size of Av-AgNPs is 55.8 nm with a polydispered index (PI) of 0.297, similarly the average particle size of Av-IONPs is 80.6 nm with an polydispered index (PI) of 0.469. Zeta-potential of Av-AgNPs was detected at -24.6 mV and Av-IONPs were detected at 28.8 mV, the result reveals that they high stability due their high negative charge and positive charge respectively. The dual synthesized Av-AgNPs, Av-IONPs exhibits excellent antioxidant activity by DPPH, H2O2 and NO methods. DPPH was proven to be the best when compared with the other two methods. The biosynthesized Av-AgNPs, Av-IONPs proved to have very good antimicrobial activity against gram +ve and gram –ve bacteria. Conclusion: when compared with standard antibiotic. There were several reports on green synthesis of metal nanoparticles using various plant parts, but here edible leafy vegetable Amaranthus viridis was used for biosynthesis of both Av-AgNPs and Av-IONPs.


2020 ◽  
pp. 91-108
Author(s):  
Ana M. Herrera-González ◽  
M. Caldera-Villalobos ◽  
J. García-Serrano ◽  
M. C. Reyes-Ángeles

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 766 ◽  
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Kamil Kuča ◽  
Anu Kalia ◽  
Eugenie Nepovimova ◽  
...  

Green synthesis has gained wide attention as a sustainable, reliable, and eco-friendly approach to the synthesis of a variety of nanomaterials, including hybrid materials, metal/metal oxide nanoparticles, and bioinspired materials. Plant flowers contain diverse secondary compounds, including pigments, volatile substances contributing to fragrance, and other phenolics that have a profound ethnobotanical relevance, particularly in relation to the curing of diseases by ‘Pushpa Ayurveda’ or floral therapy. These compounds can be utilized as potent reducing agents for the synthesis of a variety of metal/metal oxide nanoparticles (NPs), such as gold, silver, copper, zinc, iron, and cadmium. Phytochemicals from flowers can act both as reducing and stabilizing agents, besides having a role as precursor molecules for the formation of NPs. Furthermore, the synthesis is mostly performed at ambient room temperatures and is eco-friendly, as no toxic derivatives are formed. The NPs obtained exhibit unique and diverse properties, which can be harnessed for a variety of applications in different fields. This review reports the use of a variety of flower extracts for the green synthesis of several types of metallic nanoparticles and their applications. This review shows that flower extract was mainly used to design gold and silver nanoparticles, while other metals and metal oxides were less explored in relation to this synthesis. Flower-derived silver nanoparticles show good antibacterial, antioxidant, and insecticidal activities and can be used in different applications.


Sign in / Sign up

Export Citation Format

Share Document