scholarly journals Contrasting In Vitro Apatite Growth from Bioactive Glass Surfaces with that of Spontaneous Precipitation

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1690 ◽  
Author(s):  
Yang Yu ◽  
Zoltán Bacsik ◽  
Mattias Edén

Body-fluid-exposed bioactive glasses (BGs) integrate with living tissues due to the formation of a biomimetic surface layer of calcium hydroxy-carbonate apatite (HCA) with a close composition to bone mineral. Vast efforts have been spent to understand the mechanisms underlying in vitro apatite mineralization, as either formed by direct precipitation from supersaturated solutions, or from BG substrates in a simulated body fluid (SBF). Formally, these two scenarios are distinct and have hitherto been discussed as such. Herein, we contrast them and identify several shared features. We monitored the formation of amorphous calcium phosphate (ACP) and its crystallization into HCA from a Na 2 O–CaO–SiO 2 –P 2 O 5 glass exposed to SBF for variable periods out to 28 days. The HCA growth was assessed semi-quantitatively by Fourier transform infrared spectroscopy and powder X-ray diffraction, with the evolution of the relative apatite content for increasing SBF-exposure periods evaluated against trends in Ca and P concentrations in the accompanying solutions. This revealed a sigmoidal apatite growth behavior, well-known to apply to spontaneously precipitated apatite. The results are discussed in relation to the prevailing mechanism proposed for in vitro HCA formation from silicate-based BGs, where we highlight largely simultaneous growth processes of ACP and HCA.

RSC Advances ◽  
2015 ◽  
Vol 5 (105) ◽  
pp. 86061-86071 ◽  
Author(s):  
Claudia Turdean-Ionescu ◽  
Baltzar Stevensson ◽  
Jekabs Grins ◽  
Isabel Izquierdo-Barba ◽  
Ana García ◽  
...  

Solid-state NMR and powder XRD are employed to quantify the ACP (amorphous calcium phosphate) and HCA (hydroxy-carbonate apatite) components grown from three mesoporous bioactive glasses with variable compositions.


2009 ◽  
Vol 79-82 ◽  
pp. 815-818 ◽  
Author(s):  
Qiu Ying Zhao ◽  
Ding Yong He ◽  
Xiao Yan Li ◽  
Jian Min Jiang

Hydroxyapatite (HA) coatings were deposited onto Ti6Al4V substrate by microplasma spraying (MPS) in the current research. The morphology, phase compositions, and percentage of crystallinity of the coatings were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction. An in vitro evaluation by soaking the coatings in simulated body fluid (SBF) for up to 14 days was conducted aiming at the evaluation of their bioactivity. Results from the present investigation suggest that microplasma sprayed HA coatings exhibited certain roughness, pores, and microcracks. Thermal decomposition existed in the coatings where HA, α-TCP,β-TCP, amorphous phases, and CaO-exclusive impurities were observed. The in vitro test indicated that HA coatings deposited by MPS possessed better bioactivity and stability. A layer of carbonate-apatite covered most of the coating surface, which did not exhibit significant spalling after incubation in SBF.


2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


2007 ◽  
Vol 280-283 ◽  
pp. 1599-1604
Author(s):  
Kai Hui Nan ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Na Ru Zhao ◽  
L.Y. Wang

A porous bioglass reinforced tricalcium phosphate scaffold was prepared. The microstructure, degradability and reaction products of the scaffold after immersed in a simulated body fluid for different days were emphatically investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, Fourier transformed infrared spectroscopy and induced coupled plasma spectroscopy. The results showed that a homogeneous hydroxy-carbonate-apatite (HCA) layer forms on the surface of the scaffold for over 30- day immersion and the oriented growth of the HCA occurs. In addition, this paper discussed the competing mechanism between the dissolution and the precipitation via the measurement of calcium and silicon ionic concentrations in the SBF.


2011 ◽  
Vol 341-342 ◽  
pp. 21-25
Author(s):  
Dan Nicolae Ungureanu ◽  
Nicolae Angelescu ◽  
Adrian Catangiu ◽  
Elena Valentina Stoian ◽  
Cristiana Zizi Rizescu ◽  
...  

Bioactive glasses based on SiO2-CaO-P2O5 system have been synthesized by sol – gel process. The powder glass obtained has been characterized by X-ray diffraction, X-ray fluorescence spectroscopy (XRF), and Fourier transform-infrared spectroscopy (FTIR). In vitro study reveals formation of apatite layer at surface of powder glass, after 3 days of soaking in simulated body fluid.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2020 ◽  
Vol 6 (1) ◽  
pp. 10-22
Author(s):  
Zakaria Tabia ◽  
Sihame Akhtach ◽  
Khalil El Mabrouk ◽  
Meriame Bricha ◽  
Khalid Nouneh ◽  
...  

AbstractMultifunctionality can be achieved for bioactive glasses by endowing them with multiple other properties along with bioactivity. One way to address this topic is by doping these glasses with therapeutic metallic ions. In this work, we put under investigation a series of bioactive glasses doped with tantalum. We aim to study the effect of tantalum, on the structure, bioactivity and antibacterial property of a ternary bioactive glass composition based on SiO2-CaO-P2O5. Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Electron Scanning Microscopy (SEM) were used to assess the structural and morphological properties of these glasses and monitor their changes after in vitro acellular bioactivity test. Antibacterial activity was tested against gram positive and negative bacteria. Characterization results confirmed the presence of calcium carbonate crystallites along with the amorphous silica matrix. The assessment of bioactivity in SBF indicated that all compositions showed a fast bioactive response after only six hours of immersion period. However, analytical characterization revealed that tantalum introduced a slight latency in hydroxyapatite deposition at higher concentrations (0.8-1 %mol). Antibacterial test showed that tantalum ions had an inhibition effect on the growth of E. coli and S. aureus. This effect was more pronounced in compositions where mol% of tantalum is superior to 0.4%. These results proved that tantalum could be used, in intermediate proportions, as a promising multifunctional dopant element in bioactive glasses for bone regeneration applications.


2010 ◽  
Vol 17 (02) ◽  
pp. 153-157 ◽  
Author(s):  
N. R. HA ◽  
Z. X. YANG ◽  
G. C. KIM ◽  
K. H. HWANG ◽  
D. S. SEO ◽  
...  

Titanium alloys are superior of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect between human tissue and implant. Therefore, the purpose of this study is to investigate the bioactivity of Ti alloy by alkali and acid chemical surface treatment; and the biocompatibility of Ti alloy was evaluated by in vitro test. Higher bone-bonding ability and bioactivity of the substrate were obtained by the formation of apatite layers on the Ti alloy in simulated body fluid. The microstructures of apatite layer were investigated by scanning electron microscope (SEM) and the formed phases were analyzed with X-ray diffraction (XRD).


2007 ◽  
Vol 361-363 ◽  
pp. 567-570
Author(s):  
Yasuyuki Morita ◽  
Toshiki Miyazaki ◽  
Eiichi Ishida ◽  
Chikara Ohtsuki

So-called bioactive ceramics are used for bone-repairing owing to attractive features such as direct bone-bonding in living body. However, there is limitation on clinical applications due to their inappropriate mechanical properties performances such as higher brittleness and lower fracture toughness than natural bone. To overcome this problem, hybrid materials have been developed by modification of calcium silicate, that is basic component of bioactive ceramics, with organic polymer. It is known that bioactive ceramics bond to bone through bone-like apatite layer which is formed on their surfaces by chemical reaction with body fluid. We attempted preparation of bioactive organic-inorganic hybrids from Glucomannan that is a kind of complex polysaccharide, and calcium silicate. Hybrids were prepared from glucomannan and tetraethoxysilane (TEOS). They were treated with 1M (=mol·m-3) CaCl2 aqueous solution for 24 hours. Then ability of apatite formation on the hybrids was examined in vitro using simulated body fluid (SBF, Kokubo solution). Surface structure of the specimens was examined by thin-film X-ray diffraction (TF-XRD), scanning electron microscopic (SEM) observation. The hybrids with TEOS:Glucomannan= 1:1 to 4:1 in mass ratio formed the apatite in SBF within 3 or 7 d, when they were previously treated with CaCl2 solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
U. Boonyang ◽  
F. Li ◽  
A. Stein

In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM) products or shaped bioactive glass nanoparticles. Thein vitrobioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF) at body temperature (37°C) for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document