scholarly journals Recent Advances in Fluorescent Probes for Lipid Droplets

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1768 ◽  
Author(s):  
Tkhe Fam ◽  
Andrey Klymchenko ◽  
Mayeul Collot

Lipid droplets (LDs) are organelles that serve as the storage of intracellular neutral lipids. LDs regulate many physiological processes. They recently attracted attention after extensive studies showed their involvement in metabolic disorders and diseases such as obesity, diabetes, and cancer. Therefore, it is of the highest importance to have reliable imaging tools. In this review, we focus on recent advances in the development of selective fluorescent probes for LDs. Their photophysical properties are described, and their advantages and drawbacks in fluorescence imaging are discussed. At last, we review the reported applications using these probes including two-photon excitation, in vivo and tissue imaging, as well as LDs tracking.

2021 ◽  
Author(s):  
Li Li ◽  
Zheng Lv ◽  
Zhongwei Man ◽  
Zhenzhen Xu ◽  
YuLing Wei ◽  
...  

Amyloid fibrils are associated with many neurodegenerative diseases. In-situ and in-vivo visualization of amyloid fibrils is important for medical diagnostic and requires fluorescent probes with both excitation and emission wavelengths in...


2020 ◽  
Vol 18 (23) ◽  
pp. 4288-4297
Author(s):  
Jong Min An ◽  
Sung Hyun Kim ◽  
Dokyoung Kim

Recently reported two-photon fluorescent probes based on a functionalized dipolar naphthalene platform (FDNP) are summarized.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Markus Seeger ◽  
Christoph Dehner ◽  
Dominik Jüstel ◽  
Vasilis Ntziachristos

AbstractThe non-invasive investigation of multiple biological processes remains a methodological challenge as it requires capturing different contrast mechanisms, usually not available with any single modality. Intravital microscopy has played a key role in dynamically studying biological morphology and function, but it is generally limited to resolving a small number of contrasts, typically generated by the use of transgenic labels, disturbing the biological system. We introduce concurrent 5-modal microscopy (Co5M), illustrating a new concept for label-free in vivo observations by simultaneously capturing optoacoustic, two-photon excitation fluorescence, second and third harmonic generation, and brightfield contrast. We apply Co5M to non-invasively visualize multiple wound healing biomarkers and quantitatively monitor a number of processes and features, including longitudinal changes in wound shape, microvascular and collagen density, vessel size and fractality, and the plasticity of sebaceous glands. Analysis of these parameters offers unique insights into the interplay of wound closure, vasodilation, angiogenesis, skin contracture, and epithelial reformation in space and time, inaccessible by other methods. Co5M challenges the conventional concept of biological observation by yielding multiple simultaneous parameters of pathophysiological processes in a label-free mode.


2018 ◽  
Vol 9 (10) ◽  
pp. 2705-2710 ◽  
Author(s):  
Wei Qin ◽  
Pengfei Zhang ◽  
Hui Li ◽  
Jacky W. Y. Lam ◽  
Yuanjing Cai ◽  
...  

A successful strategy for the design of ultrabright red luminogens with aggregation-induced emission (AIE) features is reported. The AIE dots can be utilized as efficient fluorescent probes for in vivo deep-tissue imaging with high penetration depth and high contrast.


Sign in / Sign up

Export Citation Format

Share Document