scholarly journals An Investigation of Surface Corrosion Behavior of Inconel 718 after Robotic Belt Grinding

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2440 ◽  
Author(s):  
Junwei Wang ◽  
Jijin Xu ◽  
Xiaoqiang Zhang ◽  
Xukai Ren ◽  
Xuefeng Song ◽  
...  

Surface corrosion resistance of nickel-based superalloys after grinding is an important consideration to ensure the service performance. In this work, robotic belt grinding is adopted because it offers controllable material processing by dynamically controlling process parameters and tool-workpiece contact state. Surface corrosion behavior of Inconel 718 after robotic belt grinding was investigated by electrochemical testing in 3.5 wt % NaCl solution at room temperature. Specimens were characterized by morphology, surface roughness and residual stress systematically. The potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) analysis indicate the corrosion resistance of the specimen surface improves remarkably with the decrease of abrasive particle size. It can be attributed to the change of surface roughness and residual stress. The energy dispersive X-ray spectroscopy (EDS) indicates that niobium (Nb) is preferentially attacked in the corrosion process. A plausible electrochemical dissolution behavior for Inconel 718 processed by robotic belt grinding is proposed. This study is of significance for achieving desired corrosion property of work surface by optimizing grinding process parameters.

2012 ◽  
Vol 501 ◽  
pp. 355-359
Author(s):  
Jun Ying Hou ◽  
Zhi Wei Zhou

Experiments were carried out with different process parameters to investigate the effects of used parameters on corrosion resistance of TiN coatings obtained. In experiments, TiN imitation gold decoration coatings were prepared on 1Cr13 pen-point and brass chromium plating pen-coil by multi-arc ion plating method. The phase composition of TiN coatings was measured by x-ray diffraction. The corrosion resistance of TiN coatings was tested by salt-mist and artificial-sweat experiments. The relationship between corrosion resistance of coatings and process parameters were analyzed. Therefore, the optimum process parameters were achieved suitable for plating coatings on substrates of 1Cr13 pen-point and brass chromium plating pen-coil with good imitation gold. Imitation gold plating layers obtained have good gloss, corrosion resistance, high hardness, wear resistance, and easy to maintain. The results showed that the corrosion resistance of coatings is more easily influenced by changes of PN2 and Vbom than that of matrix-bias voltage. The TiN coatings are of resistant to corrosion no matter they are in single or multi phase structure. The optimum parameters of achieving good corrosion resistance of TiN coatings are PN2=0.48Pa, Vbom=400V,bias=-20V. Under the optimum conditions, the obtained surface corrosion resistance state of the coatings can reach at least eight grades, even above ten grades.


2020 ◽  
Vol 1012 ◽  
pp. 401-406
Author(s):  
Carlos Trivellato de Carvalho Filho ◽  
Pedro Paiva Brito

In the present work, the friction surfacing process was applied to manufacture aluminum alloy (AA6351) coatings on low carbon steel (AISI 1020) substrates. After friction surfacing the AA6351 deposited coatings were submitted to two finishing process in order to adjust surface roughness: milling and milling followed by sanding. The corrosion behavior of the two finishing process was compared with the as-deposited condition in order to determine the influence of surface roughness on the corrosion resistance of friction surfacing coatings. The corrosion behavior was examined by electrochemical impedance spectroscopy and potentiodynamic polarization in a 3.5wt.%NaCl solution containing naturally dissolved O2. The results obtained indicated that the elevated surface roughness observed in the as-deposited condition led to relatively lower corrosion resistance in comparison, with lower values for polarization resistance and more anodic corrosion potential.


2013 ◽  
Vol 577-578 ◽  
pp. 217-220
Author(s):  
Sergio Baragetti ◽  
M. Daurù ◽  
Riccardo Gerosa ◽  
Barbara Rivolta

In the present experimental work, a WC/C coated 7075-T6 aluminum alloy was considered from the corrosion point of view. The coating was deposited by PVD technique with a final thickness of about 2.5μm. In order to study the influence of the coating on the corrosion behavior of the aluminum alloy, the samples surfaces were partially coated and the interface among the metal and the coating was analyzed after the corrosion tests described into the ASTM G110 standard. Such experimental plan was decided in order to simulate the possible in-service local removal of the thin and hard coating. This kind of damage, due for example to a foreign object impact, can occur because of the great hardness difference between the coating and the substrate. The experimental tests were carried out on samples with different surface finishing, ranging from about 0.02μm Ra (mirror-polished surface) to about 0.8μm Ra (320 grit paper). The aim of such choice was to investigate the effect of a surface roughness different from the optimal one (mirror polished) on the coating deposition. Moreover a different corrosion resistance is expected.


2019 ◽  
Vol 25 (8) ◽  
pp. 1359-1369 ◽  
Author(s):  
Changpeng Chen ◽  
Jie Yin ◽  
Haihong Zhu ◽  
Xiaoyan Zeng ◽  
Guoqing Wang ◽  
...  

Purpose High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is to predict the residual stress distribution and the effect of process parameters on the residual stress of selective laser melted (SLMed) Inconel 718 thin-walled part. Design/methodology/approach A three-dimensional (3D) indirect sequentially coupled thermal–mechanical finite element model was developed to predict the residual stress distribution of SLMed Inconel 718 thin-walled part. The material properties dependent on temperature were taken into account in both thermal and mechanical analyses, and the thermal elastic–plastic behavior of the material was also considered. Findings The residual stress changes from compressive stress to tensile stress along the deposition direction, and the residual stress increases with the deposition height. The maximum stress occurs at both ends of the interface between the part and substrate, while the second largest stress occurs near the top center of the part. The residual stress increases with the laser power, with the maximum equivalent stress increasing by 21.79 per cent as the laser power increases from 250 to 450 W. The residual stress decreases with an increase in scan speed with a reduction in the maximum equivalent stress of 13.67 per cent, as the scan speed increases from 500 to 1,000 mm/s. The residual stress decreases with an increase in layer thickness, and the maximum equivalent stress reduces by 33.12 per cent as the layer thickness increases from 20 to 60µm. Originality/value The residual stress distribution and effect of process parameters on the residual stress of SLMed Inconel 718 thin-walled part are investigated in detail. This study provides a better understanding of the residual stress in SLM and constructive guidance for process parameters optimization.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fengkui Cui ◽  
Yongxiang Su

Surface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the performance of the spline surface, gray theory is used to study the relationships between the surface roughness, residual stress, and work hardening in the pitch diameter of spline teeth. This method addresses the surface performance optimization of an involute spline as influenced by the cold roll-beating speed and feed rate as the main parameters during the cold roll-beating process. The results show that the surface roughness and hardening degree of the splines increase with an increasing feed rate but decrease with an increasing cold roll-beating speed; the residual stress of the spline decreases with an increasing feed rate and increases with an increasing cold roll-beating speed. The results also show that the feed rate has a strong influence on the surface performance of splines produced by cold roll-beating. The optimal process parameters in terms of the spline surface performance are a cold roll-beating speed of 1428 r/min and a feed rate of 42 mm/min. The results of the present work emphasize the significance of improving the surface performance of the cold roll-beating spline-forming process and determining the optimal process parameters.


2020 ◽  
Vol 57 ◽  
pp. 575-588 ◽  
Author(s):  
Xukai Ren ◽  
Ze Chai ◽  
Jijin Xu ◽  
Xiaoqiang Zhang ◽  
Yanbing He ◽  
...  

2017 ◽  
Vol 41 (3) ◽  
pp. 387-394 ◽  
Author(s):  
M. Anthony Xavior ◽  
M. Manohar ◽  
Mahesh Madhukar Patil ◽  
P. Jeyapandiarajan

Surface roughness and residual stress are considered to be major surface integrity issues that directly affect the quality and life of the components. The current research work highlights surface quality and residual stresses induced while machining Inconel 718 with a range of cutting parameters and cutting environments. Further, the study aimed to determine the optimal parameters/conditions in terms of cutting speeds, tool materials and cutting conditions to achieve better surface quality and minimum residual stress values. Minimum quantity lubrication resulted in minimum residual values for all cutting inserts and cutting velocities. The minimum surface roughness was obtained while machining at 100 m/min using a carbide insert under flood cooling condition.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2428
Author(s):  
Xiaoping Ren ◽  
Zhanqiang Liu ◽  
Xiaoliang Liang ◽  
Pengcheng Cui

Machined surface integrity characteristics, including surface stresses, physical-mechanical properties and metallographic structures, play important roles in the fatigue performance of machined components. This work aimed at investigating the effects of machined surface integrity on high-temperature low-cycle fatigue life. The process parameters were optimized to obtain required surface integrity and fatigue life of the turning superalloy Inconel 718. The relationships between low-cycle fatigue life and machined surface integrity characterization parameters were established based on the low-cycle fatigue tests at a high temperature (650 °C). The sensitivities of turning process parameters to high-temperature low-cycle fatigue life were analyzed, and the optimization parameters were proposed with the goal of antifatigue manufacturing. Experimental results indicated that the impact order of the characterization parameters of machined surface integrity on the high-temperature low-cycle fatigue life were the degree of work hardening RHV, the residual stress in the cutting speed direction S22, the fatigue stress concentration factor Kf, the degree of grain refinement RD and the residual stress in the feed direction S33. In the range of turning parameters of the experiments in this research, the cutting speeds could be 80~110 m/min, and the feed rate could be 0.10~0.12 mm/rev to achieve a longer high-temperature low-cycle fatigue life. The results can be used for guiding the fatigue-resistant manufacturing research of aeroengine superalloy turbine disks.


Sign in / Sign up

Export Citation Format

Share Document