scholarly journals Corrosion Behavior of a WC/C Coated 7075-T6 Aluminum Alloy

2013 ◽  
Vol 577-578 ◽  
pp. 217-220
Author(s):  
Sergio Baragetti ◽  
M. Daurù ◽  
Riccardo Gerosa ◽  
Barbara Rivolta

In the present experimental work, a WC/C coated 7075-T6 aluminum alloy was considered from the corrosion point of view. The coating was deposited by PVD technique with a final thickness of about 2.5μm. In order to study the influence of the coating on the corrosion behavior of the aluminum alloy, the samples surfaces were partially coated and the interface among the metal and the coating was analyzed after the corrosion tests described into the ASTM G110 standard. Such experimental plan was decided in order to simulate the possible in-service local removal of the thin and hard coating. This kind of damage, due for example to a foreign object impact, can occur because of the great hardness difference between the coating and the substrate. The experimental tests were carried out on samples with different surface finishing, ranging from about 0.02μm Ra (mirror-polished surface) to about 0.8μm Ra (320 grit paper). The aim of such choice was to investigate the effect of a surface roughness different from the optimal one (mirror polished) on the coating deposition. Moreover a different corrosion resistance is expected.

Author(s):  
Simona BOICIUC ◽  
◽  
◽  

The undertaken research which is described in this paper aims at the corrosion behaviour of composite coatings in nickel matrix using as dispersed phase technical alumina with dimensions of 5 μm and their characterization from a microstructural point of view. The corrosion resistance in the saline fog of the coatings is influenced by the microstructure, the stresses developed in the layer and the roughness.


2021 ◽  
Vol 21 (4) ◽  
pp. 2221-2233
Author(s):  
Yaru Liu ◽  
Qinglin Pan ◽  
Xiangdong Wang ◽  
Ye Ji ◽  
Qicheng Liu ◽  
...  

The corrosion mechanisms for different corrosive media on the aged 7A46 aluminum alloy were systematically investigated at nanoscale level. The combination of empirical intergranular and exfoliation corrosion behavior was employed, and coupled with first-principles calculations. Results revealed that the dispersed distribution of matrix precipitates (MPs) leads to the enhancement of the corrosion resistance pre-ageing (PA) followed by double-ageing (PA-DA) alloy. The deepest corrosion depth of PA-DA alloy was in hydrochloric acid, and the calculation result demonstrates that the passivation effect in combination with the accumulation of corrosion products in nitric acid protect the PA-DA alloy from further corrosion.


2020 ◽  
Vol 10 (3) ◽  
pp. 824
Author(s):  
Imran Mohsin ◽  
Kai He ◽  
Zheng Li ◽  
Feifei Zhang ◽  
Ruxu Du

Surface finishing and polishing are important quality assurance processes in many manufacturing industries. A polished surface (low surface roughness) is linked with many useful properties other than providing an appealing gloss to the product, such as surface friction, electrical and chemical resistance, thermal conductivity, reflection, and product life. All these properties require an efficient polishing system working with the best machining parameters. This study analyzed the effects of the different input polishing parameters on the polishing efficiency and torque in the robotic polishing system for the circular-shaped workpieces (such as ring, cylinder, sphere, cone, etc.) by using the Taguchi method and analysis of variance (ANOVA). A customized rotatory passive gripper is designed to hold the watch bezel during polishing. Under the design of experiments (DOE) technique, Taguchi’s L 18 array is selected to find the optimized process parameters for polishing efficiency (based on surface roughness) and torque. Experimental results with the statistical analysis by signal-to-noise ratio and ANOVA (95% confidence level) confirms that the polishing force and tool speed are the most influencing parameter for polishing efficiency in the system. Linear regression equations are modeled for the polishing efficiency and torque. Finally, a confirmation test is conducted for the validation of the experimentation results against actual results.


2020 ◽  
Vol 1012 ◽  
pp. 401-406
Author(s):  
Carlos Trivellato de Carvalho Filho ◽  
Pedro Paiva Brito

In the present work, the friction surfacing process was applied to manufacture aluminum alloy (AA6351) coatings on low carbon steel (AISI 1020) substrates. After friction surfacing the AA6351 deposited coatings were submitted to two finishing process in order to adjust surface roughness: milling and milling followed by sanding. The corrosion behavior of the two finishing process was compared with the as-deposited condition in order to determine the influence of surface roughness on the corrosion resistance of friction surfacing coatings. The corrosion behavior was examined by electrochemical impedance spectroscopy and potentiodynamic polarization in a 3.5wt.%NaCl solution containing naturally dissolved O2. The results obtained indicated that the elevated surface roughness observed in the as-deposited condition led to relatively lower corrosion resistance in comparison, with lower values for polarization resistance and more anodic corrosion potential.


2012 ◽  
Vol 472-475 ◽  
pp. 161-164
Author(s):  
Yu Gao Liu

This paper represents a summary of experimental results dealing with the time dependence of surface diffusion alloyed microstructure and its corrosion behavior at given temperature. The experiments were performed at 485°C for different solid diffusion time (6h, 12h, 18h ) and thus the surface alloyed microstructure of pure magnesium has been obtained. Optical and electrical microscopy and EDS compositions analysis were used to examine the cross sectional microstructure characteristics of alloyed layers of treated samples. It is shown that the new phases formed and its continuity, depending on the diffusion treated time at given temperature, have a noticeable influence on corrosion resistance and corrosion mechanism. The new formed phase Al5Mg11Zn4 was inert to the chloride solution compared with pure magnesium and acted as a corrosion barrier. It was concluded that the continuous Al5Mg11Zn4 phase was beneficial from the point of view of corrosion resistance.


2020 ◽  
Vol 14 (2) ◽  
pp. 190-199
Author(s):  
Motoyuki Murashima ◽  
◽  
Yusuke Imaizumi ◽  
Noritsugu Umehara ◽  
Takayuki Tokoroyama

In this paper, we propose a new polishing method for diamond-like carbon (DLC) coatings using a carbon fiber brush (CFB). Surface finishing is an important process for DLC coating applications. A lapping process is widely used for attaining tetrahedral amorphous carbon (ta-C) coatings, which are a type of DLC coating containing many droplets, to obtain fine flat surfaces. The lapping process removes protuberant parts of droplets rather than the entire droplet. In this paper, we propose a new polish brush material made of carbon fiber, called CFB. Carbon fiber has both mechanical strength due to its hard carbonaceous material and flexibility due to its fiber structure. In polishing tests, CFB removed droplets from ta-C coatings and the removal effect increased with the shortening of the brush length. The surface profiles of the polished surfaces indicated that a shorter brush length yielded deep scratch marks on ta-C surfaces. Consequently, the arithmetic average surface roughness of the polished ta-C surfaces, Sa, had almost the same value as that of a non-polished surface. Here, we show the ability of CFB to remove the droplets without an increase in the surface roughness. The CFB with the longest brush length in the present study (12 mm) showed a ten-point average roughness SZJIS= 75 nm and Sa= 4.7 nm, which were 59% and 22% lower than those of the non-polished surface, respectively. Furthermore, the longest CFB removed the entire droplets whereas a shorter CFB merely removed the protuberant part of the droplets. The result indicates that CFB polishing can remove entire droplets, which result in abrasive wear or deterioration. From other polishing tests, the optimum polishing distance was determined. Shorter polishing distances could not remove droplets sufficiently whereas longer polishing distances caused deep scratches on ta-C surfaces due to the material transferred to the CFB. Accordingly, the polishing distance of 600 m showed the best surface finishing with SZJIN= 25 nm and Ra= 0.43 nm, which were 86% lower than and similar to those of the non-polished ta-C surface, respectively.


2013 ◽  
Vol 634-638 ◽  
pp. 2973-2978 ◽  
Author(s):  
Huan He ◽  
Yue Chun Fu ◽  
Wei Hua Guo ◽  
Min Xiao ◽  
Xing Zhi Pang ◽  
...  

Intermetallic compound Al3Ti-based IMC coatings were formed on AA6063 aluminum alloy by laser cladding. The microstructure and corrosion characteristics in 3.5% NaCl solution were investigated. The results show that, the laser cladding coating is made up of Al3Ti dendrites, interdendritic α-Al and uniform distribution of TiC which hardly melted during laser irradiation, and shows good bonding to the substrate. The cross distribution of Al3Ti and α-Al helps to avoid the generation of cracks in the coating. The corrosion resistance of the laser cladding coatings is greatly increased as compared with the substrate, which owes mainly to the existence of hard Al3Ti and TiC. And with the increasing of TiC content in the coating, the corrosion resistance is improved simultaneously.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 924
Author(s):  
Shuaihao Qian ◽  
Timing Zhang ◽  
Yuhua Chen ◽  
Hongxiang Li ◽  
Jilin Xie ◽  
...  

In this study, the welding thermal simulation technology was used to prepare samples under different peak temperatures and strain levels in order to reveal the effects of thermal strain on the microstructure characteristics and corrosion resistance of aluminum alloy. Furthermore, the correlation between microstructure evolution law and corrosion behavior was studied by analyzing the microstructure characteristics and performing electrochemical polarization curve tests. Results showed that the amount and distribution of the precipitated phase were the main factors affecting the corrosion behavior of aluminum alloy. The precipitated phase was distributed along the direction of tensile strain, and the grain size was coarsened from 152 to 260 μm (and even exceeded 280 μm) after experiencing peak temperatures of 300 and 400 °C. In addition, the risk of corrosion for the samples that experienced thermal strain was increased compared to those that did not undergo tensile strain. The samples that experienced a peak temperature of 300 °C presented the best corrosion resistance as the precipitated phase was evenly distributed in the matrix. However, when the peak temperature was 400 °C and the strain was 8%, the number and density of the precipitated phase increased due to the dynamic recrystallization, and the corrosion resistance of the sample became the worst. Finally, the microstructure analysis results showed that dynamic recrystallization occurred in the sample with a peak temperature of 400 °C, and the precipitated phase was mainly distributed along the grain boundaries. This led to the decrease of the corrosion resistance of grain boundaries, and the corrosion developed from pitting corrosion to intergranular corrosion.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 738
Author(s):  
Xingchen Xu ◽  
Daoxin Liu ◽  
Xiaohua Zhang ◽  
Chengsong Liu ◽  
Dan Liu ◽  
...  

The effects of an ultrasonic surface rolling process (USRP) on the localized corrosion behavior of 7B50-T7751 aluminum alloy in a sodium chloride + hydrogen peroxide solution were investigated through microstructural observation, immersion testing, and electrochemical measurements. The results revealed that this alloy is prone to pitting. However, the localized corrosion resistance can be significantly improved via both one-pass USRP and 12-pass USRP treatment. Furthermore, in the test solution, the thickness and the acceptor density of the passivation film were affected by the USRP treatment. The improved corrosion resistance of one-pass USRP-treated samples resulted mainly from the introduced compressive residual stress. However, this stress played a secondary role in the considerable enhancement observed for the corrosion resistance of the 12-pass USRP-treated samples. This enhancement is attributed primarily to the nanocrystalline surface and homogeneous surface microstructure induced by the multiple-pass USRP treatment.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


Sign in / Sign up

Export Citation Format

Share Document