scholarly journals Comparison of Effects of Sodium Bicarbonate and Sodium Carbonate on the Hydration and Properties of Portland Cement Paste

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1033 ◽  
Author(s):  
Yuli Wang ◽  
Fengxia He ◽  
Junjie Wang ◽  
Qianku Hu

Carbonates and bicarbonates are two groups of accelerators which can be used in sprayed concrete. In this study, the effects of the two accelerators sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3) (0%, 1%, 2%, 3%, and 4% by weight of ordinary Portland cement OPC) on the properties of OPC paste were compared. The results show that both of them could accelerate the initial and final setting time of OPC paste, but the effect of the two accelerators on the compressive strength were different. After 1 day, sodium bicarbonate at 3% had the highest strength while sodium carbonate at 1% had the highest strength. After 7 days, both of the two accelerators at 1% had the highest compressive strength. After 28 days, the compressive strength decreased with the increase of the two. The improved strength at 1 and 7 days was caused by the accelerated formation of ettringite and the formation of CaCO3 through the reactions between the two with portlandite. The decrease of strength was caused by the Na+ could reduce the adhesion between C-S-H gel by replacing the Ca2+. NaHCO3 was found be a better accelerator than Na2CO3.

2014 ◽  
Vol 894 ◽  
pp. 70-76
Author(s):  
Abdoullah Namdar ◽  
Fadzil Mat Yahaya ◽  
Mashita Mohd Yusoff

Cement paste was replaced with kaolin-bentonite. The specimens were exposed to elevated temperature for 3 hours in a ceramic furnace and cooled down to room temperature. After cooling, the effect of kaolin-bentonite (particles sized of < 45μm) on hydration, rehydration, surface roughness and compressive strength of ordinary Portland cement (OPC) paste were investigated. Atomic Force Microscopy (AFM) was used to study surface roughness of OPC paste-additive mixture. The application of fire on OPC paste was analyzed. The results showed imposed heat (500 oC for 3 hours) accelerates the hydration process of OPC, and reduces setting time. Increased heat to 1000 oC, leads to zero compressive strength of specimens, the compressive strength of OPC continuously reduces after specimen has fully cooled down. A method for recovery of compressive strength of OPC after offing fire has been suggested. The method of offing fire has important effects on the compressive strength of concrete. The best results for specimen content are cement-kaolin-bentonite paste, exposure to 500 o C, after 90 days of curing, and cooling down in water. In this case the compressive strength has been increased around 60 % compared to not using additive and not exposing to heat.


2014 ◽  
Vol 525 ◽  
pp. 573-579
Author(s):  
Tian Yong Huang ◽  
Dong Min Wang ◽  
Ze Liu

It is studied the influence of triethanolamine (TEA), diethylenetriamine (DEA), Triisopropanolamine (TIPA), aminoethyl ethanolamine (AE), and polyvinyl alcohol ammonium phosphate (PAAP) at different dosages on the properties of fresh and hardened cement pastes and mortars prepared by Portland cement, including standard consistency water, setting time, the cement paste fluidity, and compressive and flexural strength. It is showed that the high polarity alcohol amine molecules exhibit strong chemical interactions with cement matrix, which are reflected in modified macroscopic properties of the cement system. All alcohol amine admixtures increased the standard consistency water and decreased cement paste fluidity of Portland cement. TEA significantly shortened the initial setting time and final setting time of Portland cement. On the other hand, TIPA, DEA, AE and PAAP extended the initial setting time of cement but shortened the cement final setting time. All alcohol amine admixtures except TIPA at 0.2 and 0.5 dosage increased the compressive and flexural strength of the Portland cement mortars at 3 days. Especially when the dosage of PAAP is 1, the compressive strength of the Portland cement mortars at 3 days is increased 10.5MPa. All alcohol amine admixtures except AE at 0.2 and 0.5 dosage increase the compressive and flexural strength of the Portland cement mortars at 28 days, Especially when the dosage of TIPA is 1, the compressive strength of the Portland cement mortars at 28 days is increased 8.8MPa.


2017 ◽  
Vol 733 ◽  
pp. 85-88 ◽  
Author(s):  
Amir Fauzi ◽  
Mohd Fadhil Nuruddin ◽  
Ahmad B. Malkawi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Bashar S. Mohammed

Geopolymer system is new binding materials in concrete industry that is produced by the alkaline solution and materials rich in aluminosilicate such as fly ash. The effect of the alkaline solution to fly ash ratios of 0.3, 0.4 and 0.5 on mortar geopolymer properties was an issue in this study. The results showed that the higher alkaline solution to fly ash ratio improves the workability and brings a longer setting time, whereas the lower alkaline solution to fly ash ratio gains the significant compressive strength. It was a similar pattern with conventional mortar used ordinary Portland cement, which the compressive strength at 7 days was 85%-90% for 28 days compressive strength, whereas conventional mortar is only 65%-75%. This was due to the higher reactivity in geopolymer system that was faster than the pozzolanic reaction.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7572
Author(s):  
William Valencia-Saavedra ◽  
Rafael Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 816
Author(s):  
Yuli Wang ◽  
Huijuan Lu ◽  
Junjie Wang ◽  
Hang He

In order to improve the early age strength of ordinary Portland cement-based materials, many early strength agents were applied in different conditions. Different from previous research, the nano calcium silicate hydrate (C-S-H) particles used in this study were synthesized through the chemical reaction of CaO, SiO2, and H2O under 120 °C using the hydrothermal method, and the prepared nano C-S-H particles were highly crystalized. The influences of different amounts of nano C-S-H particles (0%, 0.5%, 1%, 2% and 3% by weight of cement) on the setting time, compressive strength, and hydration heat of cement paste were studied. The hydration products and microstructure of the cement paste with different additions of nano C-S-H particles were investigated through thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffraction (XRD), and scanning electron microscope (SEM) tests. The results show that the nano C-S-H particles could be used as an early strength agent, and the early strength of cement paste can be increased by up to 43% through accelerating the hydration of tricalcium silicate (C3S). However, the addition of more than 2% nano C-S-H particles was unfavorable to the later strength development due to more space being left during the initial accelerated hydration process. It is suggested that the suitable content of the nano C-S-H particles is 0.5%−1% by weight of cement.


2014 ◽  
Vol 679 ◽  
pp. 228-236 ◽  
Author(s):  
Karya Sinulingga ◽  
Harry Agusnar ◽  
Zakaria Mohd Amin ◽  
Basuki Wirjosentono

The effect of three different types of rice husk ash which distinguish by color, pink, grey and white ashes were used as admixture to ordinary Portland cement paste was studied. Six batches of cement paste was prepared by adding 0-50 wt % RHA. The chemical and mineralogical characteristics of RHA were first analyzed. The characteristic of cement paste was investigated using IR, TGA and XRD. Hydration temperature also recorded. Chemical analysis shows higher amount of silica in RHA which is in range of 95-98wt. %. XRD and IR confirmed the white RHA is amorphous silica. The optimum amount of RHA addition was 10 wt. % which produced comparable properties with cement paste control. Based on Calorimetery Studied, IR, TG and hydration temperature results, white silica was found the most reactive silica but plays limited role as admixture in OPC paste.Keywords: rice husk ash, ordinary Portland cement, cement paste, hydration temperature


Sign in / Sign up

Export Citation Format

Share Document