scholarly journals Preparation of Sol-Gel Derived Anticorrosive Coating on Q235 Carbon Steel Substrate with Long-Term Corrosion Prevention Durability

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1960 ◽  
Author(s):  
Yue Li ◽  
Chunchun Wu ◽  
Ming Xue ◽  
Jiawen Cai ◽  
Yi Huang ◽  
...  

Anticorrosive coatings prepared by sol-gel derived approaches have become an emergent research area in the field of corrosion prevention materials. Furthermore, enhanced coating thickness can greatly improve the barrier effect of the sol-gel coatings, thus influencing their service life in industrial applications. Here, we propose the preparation of a two-layer coating system using a low-cost sol-gel derived method. The coating structure was composed of first an underlying layer incorporated with silica and titania powder as filler and pigment materials, and a second translucent topcoat containing a colloidal silica sol-gel matrix crosslinked by methyltrimethoxysilane (MTMS). This coating system was applied on Q235 carbon steel substrate by a two-step spray deposition method, resulting in an enhanced coating thickness of around 35 μm. The physical and morphological properties of the coatings were characterized using multiple techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The anticorrosion performance of the sol-gel coatings was studied by a salt spray test, outdoor exposure test and electrochemical impedance spectroscopy (EIS). Results revealed that this two-layer coating system exhibited excellent physical and anticorrosion properties, and that the topcoat played a crucial role in maintaining the barrier effect and preventing water leakage.

2020 ◽  
Vol 984 ◽  
pp. 43-50
Author(s):  
Hua Yuan Zhang ◽  
Can Wang ◽  
Bing Xue ◽  
Jing Luo

To improve the corrosion resistance on Q235 low carbon steel, in this paper, tetraethyl orthosilicate (TEOS), N-dodecyl trimethoxysilane and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) were used to make organic-inorganic hybrid sol-gel film. Cross cut test adhesion method, neutral salt spray test, electrochemical test and film protective efficiency were taken to value the corrosion resistance property. The corrosion topography was studied by optical microscope. In addition, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) curves and equivalent electric circuit fitting were used to analyze the corrosion mechanism. The cross cut adhesion of sol-gel film can reach 1 class and the protection class can attain 5 class after 72 hours neutral salt spray test. According to the potentiodynamic polarization curve analysis, the corrosion potential of sol-gel film coating sample after 0.5 hours immersion was -0.46 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.74×10-7 A·cm-2. The corrosion potential of bare Q235 low carbon steel plate after 0.5 hours immersion was -0.78 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.75×10-6 A·cm-2. The impedance value on 0.1 Hz (|Z|0.1Hz) (1.27×106 Ω·cm2) of sol-gel film coating sample was more than three orders of magnitude higher than the value of the low carbon steel plate. Even dipping in 3.5 wt. % NaCl for 72 hours, the |Z|0.1Hz value of sol-gel coating sample was still one order of magnitude higher than the low carbon steel plate with 0.5 hours immersion. Sol-gel film with excellent adhesion can significantly improve the corrosion resistance of low carbon steel plate. Sol-gel film can increase the protection efficiency of low carbon steel plate by 90%.


2015 ◽  
Vol 227 ◽  
pp. 147-150
Author(s):  
Agnieszka Nagrabia ◽  
Maciej Sowa ◽  
Wojciech Simka ◽  
Artur Maciej

Zn-Ni and Zn-Co monolayer and Zn-Ni/Zn-Co multilayer (from 2 to 128 layers) alloy coatings were formed on steel substrate by electrodeposition from acidic Zn-Ni bath and neutral Zn-Co bath. Samples were tested in salt chamber for corrosion resistance in neutral salt spray. Open circuit potential measurement and gravimetric study of corrosion were carried for samples immersed in the 5% NaCl solution.It was found that coatings of Zn-Ni surface layer occurred higher corrosion resistance then the coatings of Zn-Co surface layer. Sixteen-layer coating with Zn-Ni surface layer proved to be most effective in protecting the steel substrate. Zn-Ni monolayer showed the lowest corrosion potential, which affects the corrosion properties. Sample weight changes during exposure to a corrosive environment are related to digestion of the coating and the formation of corrosion products.


2014 ◽  
Vol 599-601 ◽  
pp. 3-6
Author(s):  
Xia Zhao ◽  
Shuan Liu ◽  
Bao Rong Hou

nanoZrO2 was modified by styrene coupling grafting method and then used as an additive to improve the protective performance of epoxy coating. Two kinds of coatings, neat epoxy coating and nanoZrO2/epoxy coating, were prepared and applied on Q235 carbon steel plates. The plates were submitted to salt spray chamber and seawater immersion for 1000 hours to evaluate the corrosion protection performance for these two kinds of coatings. Tafel polarization curves and electrochemical impedance spectroscopy (EIS) were determined to analyze the corrosion behavior of coating/metal system. Scanning electron microscopy (SEM) and photographs were carried out for morphology analysis of two kinds of coatings under different conditions. Results showed a superior stability and efficient corrosion protection by nanoZrO2 /epoxy coating. The modified nanoZrO2 could inhibit the penetration of corrosive media and then improve the corrosion protection of the epoxy coating on carbon steel.


2015 ◽  
Vol 62 (5) ◽  
pp. 334-340
Author(s):  
Rami Mohammad Suleiman

Purpose – The purpose of this paper was to prepare a hybrid organic/inorganic coating with interesting barrier properties against the corrosion of plain carbon steel sheets in 3.5 per cent NaCl solution. The search for replacing chromates in protective coatings has led to the development of hybrid sol-gel anticorrosive coatings. Appropriate functionalization can dramatically enhance the chemical durability and mechanical strength of these coatings. Design/methodology/approach – To prepare the targeted coating, 1,2-epoxybutane (EB) was mixed with 2 to 4 per cent aminoethylaminopropyl-methylsiloxane dimethylsiloxane (APDMS) copolymer and 1,6-diaminohexane. The above coating (EBAC) has been further mixed with three different corrosion inhibitors “Moly-white® 101-ED, Heucophos Zapp® and cerium ammonium nitrate”, yielding the coatings EBAC-M, EBAC-Z and EBAC-Ce, respectively. The corrosion characteristics of all coatings on the steel panels immersed in 3.5 per cent NaCl solution were obtained using different electrochemical methods such as electrochemical impedance spectroscopic and Tafel polarization measurements. Findings – The newly prepared coatings showed interesting protection properties for protecting the steel substrate against corrosion in chloride-containing media. Originality/value – The results provide a good approach for the modification of polydimethylsiloxane coatings using a simple organic modifier.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoping Guo ◽  
Hao Xu ◽  
Jibin Pu ◽  
Chao Yao ◽  
Jing Yang ◽  
...  

A graphene modified epoxy surface tolerant coating was prepared, and the corrosion performance and rust conversion mechanism of the prepared composite coating on rusty carbon steel substrate was investigated. Scanning electron microscope (SEM), X-ray powder diffractometer (XRD), and infrared (IR) spectrum were used to confirmed the iron rust conversion performance by the reaction of phytic acid and rust. electrochemical impedance spectroscopy (EIS), polarization curve, and salt spray test were used to evaluate the corrosion resistance of low surface treatment coatings. Results indicated most of the rust were dissolved and transformed with the reaction of phytic acid and rust on the rusty carbon steel; graphene could effectively improve the compactness and protective performance of the epoxy surface tolerant coating.


2014 ◽  
Vol 896 ◽  
pp. 586-590 ◽  
Author(s):  
Sugiarti Eni ◽  
Kemas Zaini ◽  
Yong Ming Wang ◽  
N. Hashimoto ◽  
Shigenari Hayashi ◽  
...  

The corrosion of carbon steel is major infrastructure degradation problem in practically all industries, including chemical materials, mineral, and petrochemical industries. Coating on carbon steel is one of the techniques which required improving corrosion resistance in extreme environments. In present work, NiCoCrAl was diffusion-coated onto low carbon steel by electrodeposition for NiCo and pack cementation for Cr and Al. The cross section of coated specimen was observed and analyzed using SEM and TEM. Two types of coating processes have been challenging the formation of bond-coat layer on carbon steel substrate with different temperature coating process. SEM and EDS results show that the coating comprises three layers: intermetallics zone of Ni (Al) and Al (Cr), interdiffusion zone of Ni (Co), and there is the substrate. By XTEM observation, it was found that γ (Ni,Fe) and ζ hexagonal structure were identified in all specimens. Orthorhombic structure with the Al3Ni was identified in specimen developed at temperature of 800OC. Further, the top surface of a 1000OC specimen has two phases of β-NiAl and ζ hexagonal structure. In order to understand the performance of two types coating system with different temperature process, oxidation test at temperature of 800OC for 100 hours has been carried out and the result shows that coating system which was developed at 800OC has better oxidation resistance compare to 1000OC coating system.


2014 ◽  
Vol 61 (6) ◽  
pp. 423-430 ◽  
Author(s):  
Rami Mohammad Suleiman

Purpose – The purpose of this work was to prepare a hybrid organic/inorganic coating with interesting barrier properties against the corrosion of plain carbon steel sheets in 3.5 per cent NaCl solution. The search for replacing chromates in protective coatings has led to the development of hybrid sol-gel anticorrosive coatings. Appropriate functionalization can dramatically enhance the chemical durability and mechanical strength of these coatings. Design/methodology/approach – To prepare the targeted coating, 1,2-epoxybutane (EB) was mixed with 2-4 per cent aminoethylaminopropyl-methylsiloxane dimethylsiloxane copolymer and 1,6-diaminohexane. The above coating (EBAC) was further mixed with three different corrosion inhibitors “Moly-white® 101-ED, Hfucophos Zapp®” and Cerium Ammonium Nitrate, yielding the coatings (EBAC-M), (EBAC-Z) and (EABC-Ce), respectively. The corrosion characteristics of all coatings on carbon steel panels immersed in 3.5 per cent NaCl solution were obtained using different electrochemical methods such as electrochemical impedance spectroscopic and Tafel polarization measurements. Findings – The newly prepared coatings showed interesting properties for protecting the steel substrate against corrosion in chloride containing media. Originality/value – The results provide a good approach for the modification of polydimethylsiloxane coatings using a simple organic modifier.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changxu Huang ◽  
Xuhong Su ◽  
Qingqing Song ◽  
Xudong Wang

Purpose The purpose of this paper is to study the influence of temperature on the acceleration and simulation of indoor corrosion tests and the corrosion behavior of Q235 carbon steel. Design/methodology/approach The indoor corrosion test was carried out by continuous salt spray in a salt spray chamber. Weight loss analysis, X-ray diffraction, cannon 1500 D, scanning electron microscopy and electrochemical techniques are used to analyze the results. Findings It was found that thickness loss of Q235 carbon steel increases with higher temperature and it can reach 0.095 mm at 50°C. Compared with the Xisha exposure test, the acceleration rate can achieve 230 times. This phenomenon indicates that decreasing the experimental temperature is beneficial to the anti-corrosion of the Q235 carbon steel. It is fascinating to find that acceleration and simulation increase with temperature simultaneously, which shows that β-FeOOH promotes the corrosion rate and α-FeOOH provides high simulation. Meanwhile, electrochemical impedance spectroscopy indicates that the resistance of the rust layer improves with temperature. Practical implications Through the study, the authors found that with the increase of temperature, the acceleration and simulation of indoor corrosion test improved, corrosion products and kinetics are the same as those in outdoor exposure test, and which means that the laboratory can achieve the long-term corrosion degree of outdoor exposure in a short time, and the similarity with outdoor exposure is high. This helps to the study of marine atmospheric corrosion, and indoor accelerated corrosion tests can largely eliminate regional differences by adjusting some environmental factors, and lay a foundation for marine atmospheric corrosion. Originality/value The effects of temperature on the acceleration and simulation of indoor corrosion tests are discussed. Through laboratory experiments, the long-term service life of Q235 carbon in the Xisha marine atmosphere can be predicted effectively.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Ameeq Farooq ◽  
Sohaib Ahmad ◽  
Kotiba Hamad ◽  
Kashif Mairaj Deen

This research work aims to develop electrodeposited Zn-Ni alloy coatings with controlled dissolution tendencies on a mild steel substrate. The varying Ni concentration in the electroplating bath, i.e., 10, 15, 20 and 25 g·L−1, affected the surface morphology and electrochemical properties of the deposited Zn-Ni alloy coatings. SEM and EDS analysis revealed the resulting variation in surface morphology and composition. The electrochemical behavior of different coatings was evaluated by measuring the open circuit potential and cyclic polarization trends in 3.5 wt.% NaCl solution. The degradation behavior of the electrodeposited Zn-Ni coatings was estimated by conducting a salt spray test for 96 h. The addition of Ni in the coating influenced the coating thickness and surface morphology of the coatings. The coating thickness decreased from 38.2 ± 0.5 μm to 20.7 ± 0.5 μm with the increase in Ni concentration. Relatively negative corrosion potential (<−1074 ± 10 mV) of the Zn-Ni alloy coatings compared to the steel substrate (−969 mV) indicated the sacrificial dissolution behavior of the Zn-rich coatings. On the other hand, compared to the pure Zn (26.12 mpy), ~4 times lower corrosion rate of the Zn-Ni coating (7.85 mpy) was observed by the addition of 25 g·L−1 Ni+2 in the bath solution. These results highlighted that the dissolution rate of the sacrificial Zn-Ni alloy coatings can effectively be tuned by the addition of Ni in the alloy coating during the electrodeposition process.


Sign in / Sign up

Export Citation Format

Share Document