scholarly journals Corrosion Performance and Rust Conversion Mechanism of Graphene Modified Epoxy Surface Tolerant Coating

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoping Guo ◽  
Hao Xu ◽  
Jibin Pu ◽  
Chao Yao ◽  
Jing Yang ◽  
...  

A graphene modified epoxy surface tolerant coating was prepared, and the corrosion performance and rust conversion mechanism of the prepared composite coating on rusty carbon steel substrate was investigated. Scanning electron microscope (SEM), X-ray powder diffractometer (XRD), and infrared (IR) spectrum were used to confirmed the iron rust conversion performance by the reaction of phytic acid and rust. electrochemical impedance spectroscopy (EIS), polarization curve, and salt spray test were used to evaluate the corrosion resistance of low surface treatment coatings. Results indicated most of the rust were dissolved and transformed with the reaction of phytic acid and rust on the rusty carbon steel; graphene could effectively improve the compactness and protective performance of the epoxy surface tolerant coating.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


2018 ◽  
Vol 18 ◽  
pp. 19-26
Author(s):  
Nadjette Belhamra ◽  
Abd Raouf Boulebtina ◽  
Khadidja Belassadi ◽  
Abdelouahed Chala ◽  
Malika Diafi

The purpose of this paper was to investigate the effect of Al2O3 and TiO2 nanoparticles contents on structural proporties, microhardness and corrosion resistance of Zn-Ni alloy coationg. Zn-Ni, Zn-Ni-Al2O3 and Zn-Ni-TiO2 composite coatings were electrodeposited on steel substrate by direct current in sulphate bath.The structure of the coatings was studied by X-ray diffration and by scaning electron miroscopy. The results showed the appearance of Ni5Zn21 phases and that the incrorporation of Al2O3 and TiO2 in the Zn-Ni coating refined the crystal grain size.The corrosion performance of coating in the 0.6M NaCl as a corrisive solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy EIS methods. It was found that the incorporation of nanoparticules in Zn-Ni alloy coating have better corrosion resistance and the values of Rct and Zw increase, while the values of Cdl decrease with increasing of nanoparticules.


2018 ◽  
Vol 65 (4) ◽  
pp. 333-339 ◽  
Author(s):  
Chaolei Ban ◽  
Shuqin Zhu ◽  
Jie Ma ◽  
Fangreng Wang ◽  
Zhengfeng Jia ◽  
...  

Purpose Ni coating was electroplated on carbon steel substrate to protect carbon steel. Design/methodology/approach During electroplating, the ultrasonic irradiation (UI) (1 kHz) action was in situ used with different frequency. The influence of UI on the microstructure, mechanical and electrochemical performance of the coating was studied with scanning electron microscopy, X-ray diffraction, microhardness measurement, polarization curves and electrochemical impedance spectroscopy. Findings The results show that comparing that without UI imposition, UI during electroplating can refine the coating grain and decrease the micro-pores in the coating, resulting in improvement of the coating corrosion and hardness. Originality/value The imposition of UI action during electroplating Ni coating can remove intrinsic pores in the coating and compact the coating. The potential bimetallic cell between substrate and plating layer can be insulated to enhance the corrosion resistance of Ni coating. The imposition of UI action during electroplating Ni coating can refine Ni coating grain size and improve the coating haredness.


2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


RSC Advances ◽  
2015 ◽  
Vol 5 (129) ◽  
pp. 106485-106491 ◽  
Author(s):  
A. Foroozan E. ◽  
R. Naderi

In this study, the effect of coating composition on the protective performance of an eco-friendly silane sol–gel film applied on a mild steel substrate was investigated using electrochemical impedance spectroscopy and surface analysis methods.


2019 ◽  
Vol 66 (5) ◽  
pp. 595-602
Author(s):  
Zhifeng Lin ◽  
Likun Xu ◽  
Xiangbo Li ◽  
Li Wang ◽  
Weimin Guo ◽  
...  

Purpose The purpose of this paper is to examine the performance of a fastener composite coating system, sherardized (SD) coating/zinc-aluminum (ZA) coating whether it has good performance in marine environment. Design/methodology/approach In this paper, SD coating was fabricated on fastener surface by solid-diffusion method. ZA coating was fabricated by thermal sintering method. Corrosion behaviours of the composite coating were investigated with potentiodynamic polarization curves, open circuit potential and electrochemical impedance spectroscopy methods. Findings Neutral salt spray (NSS) and deep sea exposure tests revealed that the composite coating had excellent corrosion resistance. Polarization curve tests showed that corrosion current density of the sample with composite coating was significantly decreased, indicating an effective corrosion protection of the composite coating. OCP measurement of the sample in NaCl solution demonstrated that the composite coating had the best cathodic protection effect. The good corrosion resistance of the composite coating was obtained by the synergy of SD and ZA coating. Practical implications SD/ZA coating can be used in marine environment to prolong the life of carbon steel fastener. Social implications SD/ZA composite coating can reduce the risk and accident caused by failed fastener, avoid huge economic losses. Originality/value A new kind of composite coating was explored to protect the carbon steel fastener in marine environment. And the composite coating has the long-term anti-corrosion performance both in simulated and marine environment test.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1960 ◽  
Author(s):  
Yue Li ◽  
Chunchun Wu ◽  
Ming Xue ◽  
Jiawen Cai ◽  
Yi Huang ◽  
...  

Anticorrosive coatings prepared by sol-gel derived approaches have become an emergent research area in the field of corrosion prevention materials. Furthermore, enhanced coating thickness can greatly improve the barrier effect of the sol-gel coatings, thus influencing their service life in industrial applications. Here, we propose the preparation of a two-layer coating system using a low-cost sol-gel derived method. The coating structure was composed of first an underlying layer incorporated with silica and titania powder as filler and pigment materials, and a second translucent topcoat containing a colloidal silica sol-gel matrix crosslinked by methyltrimethoxysilane (MTMS). This coating system was applied on Q235 carbon steel substrate by a two-step spray deposition method, resulting in an enhanced coating thickness of around 35 μm. The physical and morphological properties of the coatings were characterized using multiple techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The anticorrosion performance of the sol-gel coatings was studied by a salt spray test, outdoor exposure test and electrochemical impedance spectroscopy (EIS). Results revealed that this two-layer coating system exhibited excellent physical and anticorrosion properties, and that the topcoat played a crucial role in maintaining the barrier effect and preventing water leakage.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Xu ◽  
Wang ◽  
Chen ◽  
Qiao ◽  
Zhang ◽  
...  

The effect of rare earth oxides on the microstructure and corrosion behavior of laser-cladding coating on 316L stainless steel was investigated using hardness measurements, a polarization curve, electrochemical impedance spectroscopy (EIS), a salt spray test, X-ray diffraction, optical microscopy, and scanning electron microscopy (SEM). The results showed that the modification of rare earth oxides on the laser-cladding layer caused minor changes to its composition but refined the grains, leading to an increase in hardness. Electrochemical and salt spray studies indicated that the corrosion resistance of the 316L stainless steel could be improved by laser cladding, especially when rare earth oxides (i.e., CeO2 and La2O3) were added as a modifier.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Lingli Xu ◽  
Zheng Chen ◽  
Fei Huang ◽  
Yinze Zuo ◽  
Xingling Shi ◽  
...  

The development of waterborne coating is essentially important for environmental protection, and cross-linking agent is of great significance for ensuring corrosion resistance of the coating. In this work, tetrabutyl titanate was modified by ethylene glycol and tris(2-hydroxyethyl) amine and used for the solidification of waterborne acrylic-epoxy resin. Fourier-transform infrared spectroscopy (FTIR) analysis revealed that the agent reacted with OH groups first to cross-link the resin preliminarily, and then, when the amount of agent was further increased, the amino groups opened epoxide rings resulting in a secondary cross-link. Field emission scanning electron microscope (FESEM) observation and electrochemical impedance spectroscopy (EIS) test found that, when the cross-linking agent was used at 6%, the coating remains intact and kept an impedance of as high as 108Ωcm2 even after being immersed in NaCl solution for 30 days. Copper-accelerated acetic acid-salt spray (CASS) test confirmed that the coating containing 6% cross-linking agent provided the best protection for the carbon steel substrate.


Sign in / Sign up

Export Citation Format

Share Document