scholarly journals Evolution of Zeolite Crystals in Self-Supporting Faujasite Blocks: Effects of Hydrothermal Conditions

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1965 ◽  
Author(s):  
Liuliu Guan ◽  
Zhuangzhuang Wang ◽  
Duyou Lu

In order to prepare self-supporting faujasite (FAU) zeolite, a self-supporting zeolite block was synthesized in situ by hydrothermal treatment of a metakaolin base geopolymer. The effects of hydrothermal conditions such as hydrothermal alkalinity, temperature and time on the phase composition, microstructure and mechanical strength of the hydrothermal samples were investigated and evidenced by a series of characterization methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmet-Teller (BET). The results showed that a self-supporting faujasite block could be obtained by hydrothermal treatment of the geopolymer block in 2 M NaOH solution at 90 °C for 24 h, which had high crystallinity, regular morphology and high compressive strength. The self-supporting zeolite block had a compressive strength of 11.7 MPa, a pore volume of 0.24 cm3/g, and an average pore diameter of 7.86 nm. The specific surface area and the microporous specific surface area of the self-supporting faujasite blocks were 80.36 m2/g and 19.7 m2/g, respectively.

2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2010 ◽  
Vol 660-661 ◽  
pp. 959-964
Author(s):  
Alexander Rodrigo Arakaki ◽  
Walter Kenji Yoshito ◽  
Valter Ussui ◽  
Dolores Ribeiro Ricci Lazar

One of the main applications of ceria-based (CeO2) ceramics is the manufacturing of Intermediate Temperature Solid Oxide Fuel Cells electrolytes. In order to improve ionic conductivity and densification of these materials various powder synthesis routes have been studied. In this work powders with composition Ce0.8(SmGd)0.2O1.9 have been synthesized by coprecipitation and hydrothermal treatment. A concentrate of rare earths containing 90wt% of CeO2 and other containing 51% of Sm2O3 and 30% of Gd2O3, both prepared from monazite processing, were used as precursor materials. The powders were characterized by X-ray diffraction, scanning and transmission electron microscopy, agglomerate size distribution by laser scattering and specific surface area by gas adsorption. Ceramic sinterability was evaluated by dilatometry and density measurements by Archimedes method. High specific surface area powders (~100m2/g) and cubic fluorite structure were obtained after hydrothermal treatment around 200°C. Ceramic densification was improved when compared to the one prepared from powders calcined at 800°C.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 344
Author(s):  
Chengwu Dong ◽  
Changlong Yin ◽  
Tongtong Wu ◽  
Zhuyan Wu ◽  
Dong Liu ◽  
...  

Unsupported NiMo catalyst has high hydrogenation activity due to its high active site distribution. However, low specific surface area and pore distribution greatly limit the efficient utilization of the active components. The Y-zeolite nanoclusters were hydrothermally synthesized and introduced into the unsupported NiMo catalysts from a layered nickel molybdate complex oxide. The XRD, N2 adsorption-desorption, FT-IR, Py-IR, SEM, NH3-TPD, and TEM were used to characterize all catalysts. The dibenzothiophene (DBT) hydrodesulfurization (HDS) reaction was performed in a continuous high pressure microreactor. The results showed that the specific surface area, pore volume, and average pore size of the unsupported NiMo catalysts were greatly increased by the Y-zeolite nanoclusters, and a more dispersed structure was produced. Furthermore, the Lewis acid and total acid content of the unsupported NiMo catalysts were greatly improved by the Y-zeolite nanoclusters. The HDS results showed that the unsupported NiMo catalysts modified by the nanoclusters had the same high desulfurization efficiency as the unmodified catalyst, but had more proportion of direct desulfurization (DDS) products. The results offer an alternative to reducing hydrogen consumption and save cost in the production of ultra clean diesel.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2839 ◽  
Author(s):  
Renata F. Botti ◽  
Murilo D.M. Innocentini ◽  
Thais A. Faleiros ◽  
Murilo F. Mello ◽  
Danilo L. Flumignan ◽  
...  

This work investigates the catalytic activity of geopolymers produced using two different alkali components (sodium or potassium) and four treatment temperatures (110 to 700 °C) for the methyl transesterification of soybean oil. The geopolymers were prepared with metakaolin as an aluminosilicate source and alkaline activating solutions containing either sodium or potassium in the same molar oxide proportions. The potassium-based formulation displayed a higher specific surface area and lower average pore size (28.64–62.54 m²/g; 9 nm) than the sodium formulation (6.34–32.62 m²/g; 17 nm). The reduction in specific surface area (SSA) after the heat treatment was more severe for the sodium formulation due to the higher thermal shrinkage. The catalytic activity of the geopolymer powders was compared under the same reactional conditions (70–75 °C, 150% methanol excess, 4 h reaction) and same weight amounts (3% to oil). The differences in performance were attributed to the influences of sodium and potassium on the geopolymerization process and to the accessibility of the reactants to the catalytic sites. The Na-based geopolymers performed better, with FAME contents in the biodiesel phase of 85.1% and 89.9% for samples treated at 500 and 300 °C, respectively. These results are competitive in comparison with most heterogeneous base catalysts reported in the literature, considering the very mild conditions of temperature, excess methanol and catalyst amount and the short time spent in reactions.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


2011 ◽  
Vol 183-185 ◽  
pp. 2024-2027
Author(s):  
Li Ming Jiang

Titania powders were prepared under hydrothermal conditions by employing organic molecule β-cyclodextrin(CD) as template, and characterized by means of TGA、XRD、BET . The effects of the pH on the specific surface area and photocatalytic performance of titania were discussed. The results showed that titania powders were anatase structure;the titania powders with specific surface area up to 216.2 m2g-1 were prepared while the system pH was about 1 , and the powders had the best photocatalytic activity.


2010 ◽  
Vol 7 (2) ◽  
pp. 121-127
Author(s):  
Silvester Tursiloadi ◽  
Dinie Mansur ◽  
Yeny Meliana ◽  
Ruslan Efendi

Stable anatase is attractive because of its notable functions for photocatalysis and photon-electron transfer.  TiO2-nanoparticles dispersed SiO2 wet gels were prepared by hydrolysis of Ti(OC4H9n)4 and Si(OC2H5)4 in a 2-propanol solution with acid catalyst.  The solvent in the wet gels was supercritically extracted using CO2 at 60 oC and 22 Mpa in one-step.  Thermal evolution of the microstructure of the extracted gels (aerogels) was evaluated by XRD measurements, TEM and N2 adsorption measurements. The as-extracted aerogel with a large specific surface area, more than 365 m2g-1, contained anatase nanoparticles, about 5 nm in diameter.  The anatase phase was stable after calcinations at temperatures up to 1000 oC, and BET specific surface area, total pore volume and average pore diameter did not change significantly after calcinations at temperature up to 800 oC.   Keywords: Stable anatase, sol-gel, CO2 supercritical extraction.


Author(s):  
Nahid Haghnazari ◽  
Mozaffar Abdollahifar ◽  
Farahnaz Jahani

Mesoporous AlOOH was synthesized by hydrothermal treatment from aluminium nitrate and NaOH or KOH. The effect of NaOH and KOH as precipitating agents on the characterization of samples were investigated. xrd, ftir, fesem and N<sub>2</sub> adsorption-desorption analytical techniques were used to characterize the products. Our results showed that using KOH as precipitating agent was favourable for the formation of mesoporous and crystalline AlOOH with high bet-specific surface area of 98 m<sup>2</sup>/g.


2019 ◽  
Vol 19 (6) ◽  
pp. 3205-3209 ◽  
Author(s):  
Shangqing Lu ◽  
Qirui Lin ◽  
Sufang Wu

This study focuses on the synergy effect of pore size and specific surface area (SSA) on the carbon dioxide sorption performance. Nano CaO-based CO2 sorbents with various pore size (15–55 nm) under similar SSA, and different SSA (14.50–48.90 m2/g) under similar pore size are prepared using selected organic templates. Results indicate that increasing the proportion of macropore in 47–96 nm could significantly improve sorbent’s sorption rate and corresponding sorption capacity. Besides, sorption capacity could be also by SSA. Moreover, partial correlation analysis reveals that sorption capacity is slightly more dependent on average pore size than SSA.


MRS Advances ◽  
2017 ◽  
Vol 2 (57) ◽  
pp. 3505-3510
Author(s):  
Jiankai Zhang ◽  
Xiaohong Chen ◽  
Ran Liu ◽  
Huaihe Song ◽  
Zhihong Li

ABSTRACTMagnesium oxide aerogels were made by sol-gel process using magnesium methoxide as precursor, methanol and deionized water as solvent with ethanol supercritical fluid drying. The influences of the different factors on the gel time and the specific surface area of magnesium oxide aerogels were studied, and the structure and morphology were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and X-ray diffraction (XRD), and the Small Angle X-ray Scatter (SAXS) was utilized to determine the fractural structure of the magnesium oxide aerogels. The results show that MgO aerogels belong to the typical mesoporous materials with rich network and highly developed pore structure, and the specific surface area is 904.9 m2/g, the apparent density is 0.055 g/cm3, the average pore size is 19.6 nm. The results of SAXS analysis show that the fractal dimension of the MgO aerogels is 2.32 in high q area which proves the existence of rough surface and pore fractal structure.


Sign in / Sign up

Export Citation Format

Share Document