scholarly journals Impact of Process Parameters on the Quality of Deep Holes Drilled in Inconel 718 Using EDD

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2298 ◽  
Author(s):  
Magdalena Machno

Advanced engineering materials (e.g., nickel or titanium alloy) are being increasingly applied to produce parts of gas turbines in the aerospace industry. To improve the durability of these parts, many holes, with a length-to-diameter aspect ratio greater than 20:1, are created in their structure. The quality of the holes significantly affects the cooling process of the elements. However, it is challenging to machine materials by conventional methods. When machining a hole with a high aspect ratio, the major problem is effective flushing of the machining area, which can improve the hole’s surface integrity and dimensional accuracy. Consequently, the electro-discharge drilling (EDD) process is good alternative for this application. This paper presents the results of an analysis of the EDD of Inconel 718 alloy. An experiment was conducted to evaluate the impact of process parameters (pulse time, current amplitude, and discharge voltage) on the process’s performance (linear tool wear, taper angle, drilling speed, the hole’s aspect ratio, and surface roughness (Ra and Rz)). The results show that EDD provides us with the possibility to drill holes with an aspect ratio greater than 10:1. The results also demonstrate that holes with an aspect ratio greater than 10:1 and a small taper angle value have a significantly decreased quality of internal surface, especially at the bottom of the hole. This indicates that an insufficient amount of debris is removed from the bottom of the hole.

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 103
Author(s):  
Jin Mark D. G. Pagulayan ◽  
Aprille Suzette V. Mendoza ◽  
Fredelyn S. Gascon ◽  
Jan Carlo C. Aningat ◽  
Abigail S. Rustia ◽  
...  

The study aimed to evaluate the effects of process parameters (time and raw material weight (RMW)) of conventional (boiling for 10–45 min) and microwave-assisted (2–8 min) aqueous extraction on the color quality (i.e., lightness (L*), chroma (C*), and hue (H°) of anthocyanin –based colorants of red and Inubi sweet potato (Ipomoea batatas L.) leaves. Using response surface methodology, it was found that RMW and boiling time (BT) and microwave time (MT) generally had a significant (p < 0.05) effect on the color quality of the extract from both extraction methods. The effects were found to vary depending on the extraction method and variety of the leaves used. Both extraction methods produced a brown to brick-red extract from the Inubi variety that turned red-violet to pink when acidified. The red sweet potato leaves produced a deep violet colored extract that also turned red-violet when acidified. It is recommended that the anthocyanin content of the extracts be measured to validate the impact of the methods on the active agent. Nevertheless, the outcomes in this study may serve as baseline data for further studies on the potential of sweet potato leaf colorants (SPLC) as a colorant with functional properties.


2012 ◽  
Vol 192 ◽  
pp. 180-184 ◽  
Author(s):  
Ai Xia He ◽  
Rong Chang Li

Mechanical expanding process for large diameter line pipe, a detailed analysis of factors affecting the quality of the final products of the mechanical expansion and proposed optimization using orthogonal array optimization method, as an indicator of dimensional accuracy and shape accuracy of the products, combination of a variety of specifications of mechanical expanding products, the main process parameters to be optimized. Analysis and discussion of results, revealing the degree of influence of various factors on the quality of the final product, and gives the optimum combination of the results. Experiments show that the combination of optimized process parameters, and more help to improve the accuracy of the size and shape of products.


Author(s):  
Dipankar Dua ◽  
Mohammad Khajavi ◽  
Gary White ◽  
Deepak Thirumurthy ◽  
Jaskirat Singh

Abstract Siemens Energy has a large fleet of aero-derivative gas turbines. The performance and durability of these power turbines largely depend on the capability of hot section components to resist high-temperature surface attacks and to maintain their mechanical properties. Hot corrosion attack occurs due to exposure of turbine components to sulfur-bearing fuels/air together with other corrosive compounds during turbine operation. This paper investigates the impact of low-temperature hot corrosion on the stress rupture of commonly used gas turbine disk alloys, including Inconel 718, Incoloy 901, and A-286. The results indicate that Inconel 718 and Incoloy 901 maintain their creep strength advantage over A-286 in a low-temperature hot corrosion inducing environment at 1100°F. All three materials exhibited an equivalent life reduction in the corrosive environments at 1100°F. Moreover, the results demonstrate that the stress-rupture life of materials in hot-corrosion environments depends on the combined and cumulative effects of corrosion-resistant and hardening elements.


2019 ◽  
Vol 969 ◽  
pp. 644-649
Author(s):  
Rakesh Kumar ◽  
Anand Pandey ◽  
Pooja Sharma

Inconel-718 is a nickel based super alloy (difficult-to-cut material) used in aerospace industry. Analysis of machining performances viz. Over Cut (OC) & Surface Roughness (SR) for Inconel-718 through rotary Cu-pin tool electrode have been carried out. Peak current (Ip), pulse-on time (Ton), tool rotation (Nt) & hole depth (h) were used as input factors in Electrical Discharge Drilling (EDD) of Inconel-718 work-piece. Effect of input parameters on performance characteristics like OC & SR were found by Taguchi’s L9 (34) orthogonal array. It is reveals that Ip & h are most affecting factors that affects OC & SR. The Scanning Electron Microscope image was used to measure diameter of hole on work-piece after machining.


Author(s):  
SI Okeke ◽  
N Harrison ◽  
M Tong

This paper presents a fully coupled thermomechanical model for the linear friction welding process of Inconel-718 nickel-based superalloy by using the finite element method. Friction heat, plastic work, and contact formulation were taken into account for two deformable plastic bodies oscillating relative to each other under large compressive force. The modelling results of the thermal history at the weldline interface and thermal field at a distance away from the rubbing surfaces were compared to instrumented data sourced from related publications for model verification. Optimal linear friction welding process parameters were identified via comparison of weld temperature to the liquidus temperature of Inconel-718 alloy. Comparison of interface temperature showed a consistent range of values above the solidus melting temperature (1250 ℃) and below the liquidus melting temperature (1360 ℃) of Inconel-718 alloy. For the first time, a visible linear friction welding process window is identified using a thermomechanical computational modelling method. Through computational modelling, the influence of welding process parameters on the heat transfer and deformation of weld was systematically investigated.


2011 ◽  
Vol 473 ◽  
pp. 290-297 ◽  
Author(s):  
Wojciech Wieckowski ◽  
Piotr Lacki ◽  
Janina Adamus

The required technological quality of the blanked products can be achieved through operations of fine blanking. This allows for obtaining products with improved dimensional accuracy and good quality cut-surface. In order to cut products from soft materials, including aluminium and its alloys, the methods of fine blanking with upsetting and fine blanking with reduced clearance are typically employed. The study presents the results of numerical modelling of the fine blanking process for a disk made of 1-millimetre sheet aluminium EN AW-1070A. The goal of the numerical simulations was to evaluate the effect of clearance between blanking die and the punch, and the impact of V-ring indenter on stress and strain distribution in the shearing zone.


2014 ◽  
Vol 884-885 ◽  
pp. 345-348 ◽  
Author(s):  
Lei Shang ◽  
Hai Li Yang ◽  
Hong Xu ◽  
Yun Gang Li

Magnetic properties of silicon steel mainly depend on the internal organizational structure and chemical composition. The main factors affecting magnetic properties of silicon steel are analyzed and summarized, including grain size, inclusions (size, type, quantity, and morphology), crystal texture, internal stress, dimensional accuracy, the surface quality of steels, and chemical composition. The impact mechanism of the factors influencing silicon steel magnetic property is explained and these influence factors are interrelated.


2007 ◽  
Vol 353-358 ◽  
pp. 1931-1934
Author(s):  
Wurikaixi Aiyiti ◽  
Wan Hua Zhao ◽  
Yi Ping Tang ◽  
Bing Heng Lu

A direct metal RP (rapid prototyping) process based on micro-plasma arc welding (MPAW) is presented. The impact of R (ratio of width to height of the deposited track’s cross-section) on part quality is investigated. Taguchi method is adopted to analyze the effect of each process parameter on R, and the optimized process parameters are obtained. The results show that the quality of the parts with larger R is better than that with smaller R, and the peak current, duty cycle of pulse duration, wire-feeding speed, scanning speed and plasma gas flow rate all exert significant effects on R. The overlapped surface smoothness, tensile strength and elongation of the parts fabricated with optimized parameters are measured to show obviously better performances than those of the parts fabricated with ordinary process parameters.


Sign in / Sign up

Export Citation Format

Share Document