scholarly journals Utilization of SiC and Cu Particles to Enhance Thermal and Mechanical Properties of Al Matrix Composites

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2770 ◽  
Author(s):  
Dongxu Wu ◽  
Congliang Huang ◽  
Yukai Wang ◽  
Yi An ◽  
Chuwen Guo

In this work, SiC and Cu particles were utilized to enhance the thermal and mechanical properties of Al matrix composites. The ball-milling and cold-compact methods were applied to prepare Al matrix composites, and the uniform distribution of SiC and Cu particles in the composite confirms the validity of our preparation method. After characterizing the thermal conductivity and the compressibility of the prepared composites, results show that small particles have a higher potential to improve compressibility than large particles, which is attributed to the size effect of elastic modulus. The addition of SiC to the Al matrix will improve the compressibility behavior of Al matrix composites, and the compressibility can be enhanced by 100% when SiC content is increased from 0 to 30%. However, the addition of SiC particles has a negative effect on thermal conductivity because of the low thermal conductivity of SiC particles. The addition of Cu particles to Al-SiC MMCs could further slightly improve the compressibility behavior of Al-SiC/Cu MMCs, while the thermal conductivity could be enhanced by about 100% when the Cu content was increased from 0 to 30%. To meet the need for low density and high thermal conductivity in applications, it is more desirable to enhance the specific thermal conductivity by enlarging the preparation pressure and/or sintering temperature. This work is expected to supply some information for preparing Al matrix composites with low density but high thermal conductivity and high compressibility.

Wear ◽  
2019 ◽  
Vol 430-431 ◽  
pp. 145-156 ◽  
Author(s):  
Chenxu Zhang ◽  
Dongxu Yao ◽  
Jinwei Yin ◽  
Kaihui Zuo ◽  
Yongfeng Xia ◽  
...  

2013 ◽  
Vol 27 (19) ◽  
pp. 1341025 ◽  
Author(s):  
YU HONG ◽  
XIAOLI CHEN ◽  
WENFANG WANG ◽  
YUCHENG WU

Copper-matrix composites reinforced with SiC particles are prepared by mechanical alloying. The microstructure characteristics, relative density, hardness, tensile strength, electrical conductivity, thermal conductivity and wear properties of the composites are investigated in this paper. The results indicate that the relative density, macro-hardness and mechanical properties of composites are improved by modifying the surface of SiC particles with Cu and Ni . The electrical conductivity and thermal conductivity of composites, however, are not obviously improved. For a given volume fraction of SiC , the Cu / SiC ( Ni ) has higher mechanical properties than Cu / SiC ( Cu ). The wear resistance of the composites are improved by the addition of SiC . The composites with optimized interface have lower wear rate.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1299 ◽  
Author(s):  
Hao Yang ◽  
Xin-wei She ◽  
Bin-bin Tang ◽  
Chun-mei Li ◽  
Xian-quan Jiang

Composites of 7055 aluminum (Al) matrix reinforced with SiC particles were prepared using the spray deposition method. The volume fraction of the phase reinforced with SiC particles was 17%. The effect of the introduction of SiC particles on the deposited microstructure and properties of the composites was studied in order to facilitate the follow-up study. The structure and element enrichment zone of spray-deposited SiCp/7055 Al matrix composites were studied by Optical Microscope (OM), X-ray diffraction (XRD), Scanning Electronic Microscopy (SEM) and Transmission electron microscopy (TEM). The results show that the reinforcement phases of the SiC particles were uniformly distributed on the macro and micro levels, and a few SiC particles were segregated into annular closed regions. C and Si on the surface of SiC particles diffused to the Al matrix. The distribution of the two elements was gradient weakening with SiC particles as the center, and the enrichment zones of Si, Mg and Cu formed in the middle of the closed annular area of a few SiC particles. The enrichment zones were mainly composed of alpha-Al, SiC, Al2CuMg, Al2Cu and MgZn2. AlCu and AlMgCu phase precipitate on the surface of the SiC particles, beside the particle boundary, and had the characteristics of preferred nucleation. They tended to grow at the edges and corners of SiC particles. It was observed that the formation of nanoparticles in the alloy had a pinning effect on dislocations. The different cooling rates of the SiC particles and the Al matrix led to different aluminum liquid particle sizes, ranging from 20 to 150 μm. In the region surrounded by SiC particles, the phenomenon of large particles extruding small particles was widespread. Tearing edges and cracks continued to propagate around the SiC particles, increasing their propagation journey and delaying the fracture of the materials.


2019 ◽  
Vol 35 (7) ◽  
pp. 1345-1353 ◽  
Author(s):  
Chenxu Zhang ◽  
Yu-Ping Zeng ◽  
Dongxu Yao ◽  
Jinwei Yin ◽  
Kaihui Zuo ◽  
...  

2014 ◽  
Vol 989-994 ◽  
pp. 515-518
Author(s):  
Guo Jun Ma ◽  
Yu Tian Ding ◽  
Pei Peng Jin

The study investigates the influence of different fraction of Mg2B2O5 whiskers (5, 10, 15 and 20vol.% ) on the microstructure of the hot extruded composite as well as on the mechanical properties in the same condition. The results indicate that the process is available for producing the composite, image analysis shows the whisker tends to cluster together with increasing content of reinforcement. When the content of the reinforcement is 10%, the composites exhibit the best mechanical properties, meanwhile, it demonstrate cluster is unfavorable to the improvement of properties of materials. The ductile failure of 6061Al matrix, the reinforcement fracture and the whisker-matrix interface debonding acted as the main mechanism of fracture nucleation.


2001 ◽  
Vol 35 (17) ◽  
pp. 1570-1586
Author(s):  
Changwook Son ◽  
Ikwoo Kim ◽  
Ikmin Park ◽  
Kyung-Mox Cho ◽  
Ildong Choi

Sign in / Sign up

Export Citation Format

Share Document