scholarly journals Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3194 ◽  
Author(s):  
Lenka Laiblová ◽  
Jan Pešta ◽  
Anuj Kumar ◽  
Petr Hájek ◽  
Ctislav Fiala ◽  
...  

Pitch-faced concrete is becoming a very popular element of modern architecture in the 21st century. In particular, the demand for concrete facades is increasing globally. On the other hand, climate change, environmental degradation, and limited resources are motivations for sustainable building materials. The construction industry is one the highest emitters of CO2 and other greenhouse gases, in which concrete plays a major role. Thus, reduction in the volume of concrete consumption is essential to control greenhouse gases. One approach to this problem is to use textile reinforced concrete (TRC). The main aim of the present study was to compare the subtle TRC facade made of three different types of technical textile rovings (glass, carbon, and basalt) with ordinary facades reinforced by steel reinforcement (ORC). The goal was to compare the basic environmental impact potential according to product category rules (PCR) for concrete structures. The functional unit was defined as an experimental facade with an area of 60 m2 and a 100-year lifespan. Inventory data were elaborated for concrete, steel, and textile fiber production; the building site; service life; demolition; and final disposal. The main life cycle assessment (LCA) parameters were global warming potential (GWP), ozone depletion (ODP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), and photochemical oxidant creation (POCP). All the data used in the work were related to Czech Republic. Textile reinforced concrete facades appeared to be more environmentally friendly in four of six impact categories by an average of 30%. The results of the present study revealed that, in comparison to ORC, TRC has a lower environmental impact for the given conditions and thus good potential for use in sustainable construction.

Author(s):  
Andrea Moňoková ◽  
Silvia Vilčeková

Increasing concerns about negative environmental impacts of building structures call for higher demands on the design of environmental friendly buildings. This article is aimed at assessing the overall environmental impact of buildings throughout its life cycle as well as on environmental impact of all building materials and building services for single-family homes. This analysis examines the role of utilized green environmental technologies for the following selected impact categories: GWP - global warming potential, EP - eutrophication potential, AP - acidification potential POCP and photochemical ozone formation potential expressed in kg CO2eq, PO43-eq, SO2eq and ethylene within the “Cradle to gate with options” boundary. The LCA assessment methodology and eToolLCD software have been used to model the effects of houses’ life cycle.


2019 ◽  
Vol 5 (1) ◽  
pp. 172 ◽  
Author(s):  
IfeOluwa B. Adejuyigbe ◽  
Paschal C. Chiadighikaobi ◽  
Donatus A. Okpara

To a large extend sustainable construction of any structure greatly depends on the materials used in its formation. Traditionally, materials such as bricks, mortar, steels are still important components of most buildings. But modern technology is equally changing how materials are created and used.Based on the above explanation, the objective of this paper was to compare the steel structures with basalt fiber reinforced concrete. As basalt fiber is still not wide spread, this paper focus on the advantages, usages and applications of basalt fiber reinforced concrete to solve construction and structural challenges. The method and analysis used in this paper was derived from research and works done by previous authors on similar topics. Previous research information show that producers and users of these materials make choice of building materials to depend on the area the structure is proposed to be built and on the taste and ideas given by the client. Their consideration is often devoid of environmental, psychological, social and economy factors. The research methods lead to the understanding on the use and importance of basalt fiber concrete for landfills, leachate reservoirs and multifunctional structure.This paper helps structural users and engineers to know that green materials with good environmental characteristics that support nature are being considered as best construction materials due to what they are composed of. Waste and cost are also crucial as far as construction materials are concern. Even now, management of waste products from landfills specially leachates requires better construction designs in tropical region like Nigeria. More so, in line with the recent safe the climate calls, efforts to select the kind of material used in raising structures are becoming unavoidable.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3771
Author(s):  
Amjad Almusaed ◽  
Ibrahim Yitmen ◽  
Asaad Almsaad ◽  
İlknur Akiner ◽  
Muhammed Ernur Akiner

Wood is one of the most fully renewable building materials, so wood instead of non-renewable materials produced from organic energy sources significantly reduces the environmental impact. Construction products can be replenished at the end of their working life and their elements and components deconstructed in a closed-loop manner to act as a material for potential construction. Materials passports (MPs) are instruments for incorporating circular economy principles (CEP) into structures. Material passports (MPs) consider all the building’s life cycle (BLC) steps to ensure that it can be reused and transformed several times. The number of reuse times and the operating life of the commodity greatly influence the environmental effects incorporated. For a new generation of buildings, the developing of an elegant kinetic wooden façade has become a necessity. It represents a multidisciplinary region with different climatic, fiscal, constructional materials, equipment, and programs, and ecology-influencing design processes and decisions. Based on an overview of the material’s environmental profile (MEP) and material passport (MP) definition in the design phase, this article attempts to establish and formulate an analytical analysis of the wood selection process used to produce a kinetic façade. The paper will analyze the importance of environmentally sustainable construction and a harmonious architectural environment to reduce harmful human intervention on the environment. It will examine the use of wooden panels on buildings’ façades as one solution to building impact on the environment. It will show the features of the formation of the wooden exterior of the building. It will also examine modern architecture that enters into a dialogue with the environment, giving unique flexibility to adapt a building. The study finds that new buildings can be easily created today. The concept of building materials passport and the environmental selection of the kinetic wooden façade can be incorporated into the building design process. This will improve the economic and environmental impact of the building on human life.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1383-1400 ◽  
Author(s):  
Yiska Goldfeld ◽  
Gali Perry

The study examines the use of hybrid carbon-based textile-reinforced concrete elements with self-sensing capabilities to quantitatively detect wetting events within cracked zones. The self-sensory structural element combines the advantages of AR-glass and carbon-based textile-reinforced concrete for thin-walled structural elements with those stemming from the electrical properties of reinforced carbon rovings. The article investigates the sensitivity of sensory carbon rovings to distinguish between the magnitudes of various wetting events, which is associated with the severity of the cracking, according to two electrical setups (DC and AC circuits). The sensing concept takes advantage of the continuous configuration of the carbon rovings, which enables direct connection of the roving ends to the data acquisition system, and of the manufacturing process that two carbon rovings are placed adjacent to one another. Therefore, it is assumed that wetting events electrically short-circuit the two adjacent rovings. The sensitivity of the two electrical setups is experimentally investigated and performed on a couple of bared carbon rovings and on a cracked textile-reinforced concrete beam. Test results demonstrate the sensitivity of the sensing capabilities of the carbon rovings to detect and distinguish between the magnitudes of the wetting events and consequently the severity of the cracking.


Author(s):  
Prof. Naheed B Mir Mumtaz Ali

Sustainability in construction helps to minimize the consequences of material, Social and pollution factor and stakeholders on the construction site. It also helps to prepare the strategies and methods to follow throughout the given timeline of the project. The Sustainable construction management plan (SCMP) also aid to define the potential amenity disturbance during construction with allusion to project scale. SCMP of any project characterized on the following four main phases: Achieving Sustainable parameters through Architectural design of the building; Material selection and its impact factors on built environment; Type of Project (New/Refurbishment/Demolition) and on-site measurements accordingly; Sustainable delivery action. Nevertheless, the sustainable construction and building materials, both combinations used in the common planning procedure for handling the construction on site in order to reduce the waste and environmental impact with the sophisticated methodologies. Establishing the well manageable goals, re-organizing the building layout (in refurbishment case), thermal comfort, cost management and minimization, minimum environmental impact on site and surroundings are immense challenges faced while preparing and acting the SCMP on construction site. This research paper will help to understand the construction management plan guidelines and recommendations of the construction site where the condition of refurbishment considered and Sustainability as a primary objective.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Sign in / Sign up

Export Citation Format

Share Document