scholarly journals Food Waste Materials as Low-Cost Adsorbents for the Removal of Volatile Organic Compounds from Wastewater

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4242
Author(s):  
Maria Agostina Frezzini ◽  
Lorenzo Massimi ◽  
Maria Luisa Astolfi ◽  
Silvia Canepari ◽  
Antonella Giuliano

The aim of this work was to study the potential of food waste materials (banana peel, potato peel, apple peel, lemon peel, coffee waste, decaf coffee waste, grape waste, and carob peel) as low-cost adsorbents for the removal of aliphatic and aromatic volatile organic compounds (VOCs) from wastewater. The ability of examined food waste materials to adsorb VOCs from synthetic multi-component standard solutions was evaluated and the examined food waste materials showed high removal efficiency. Performances of coffee waste, grape waste, and lemon peel were detailed by using Trichloroethylene and p-Xylene in mono-component standard solutions. The adsorption capacity of the three selected food wastes was determined by using linear Langmuir and Freundlich isotherm models. Two errors functions, average percentage error (APE) and the chi-square test (χ2), were used for isotherm optimization prediction. Freundlich isotherm well described the adsorption of VOCs on the considered materials. According to the obtained results, a multilayer, physical, and cooperative adsorption process was hypothesized, particularly evident when the VOCs’ concentrations are high. This was confirmed by the high adsorption efficiency percentages (E% > 80%) of VOCs from a real polluted matrix (urban solid waste leachate), containing high concentrations of total organic content.

This study examines the potential of artificial neural network (ANN) to predict Total Volatile Organic Compounds (TVOCs) released via decomposition of local food wastes. To mimic the decomposition process, a bioreactor was designed to stimulate the food waste storage condition. The food waste was modeled based on the waste composition from a residential area. A feed forward multilayer back propagation (Levenberg – Marquardt training algorithm) was then developed to predict the TVOCs. The findings indicate that a two-layer artificial neuron network (ANN) with six input variables and these include (outside and inside temperature, pH, moisture content, oxygen level, relative humidity) with a total of eighty eight (88) data are used for the modeling purpose. The network with the highest regression coefficient (R) is 0.9967 and the lowest Mean Square Error (MSE) is 0.00012 (nearest to the value of zero) has been selected as the Optimum ANN model. The findings of this study suggest the most suitable ANN model that befits the research objective is ANN model with one (1) hidden layer with fifteen (15) hidden neurons. Additionally, it is critical to note that the results from the experiment and predicted model are in good agreement.


Chemosensors ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Valérie Goletto ◽  
Geneviève Mialon ◽  
Timothé Faivre ◽  
Ying Wang ◽  
Isabelle Lesieur ◽  
...  

Formaldehyde and volatile organic compounds (VOCs) are major indoor pollutants with multiple origins. Standard methods exist to measure them that require analytical expertise and provide, at best, an average value of their concentrations. There is a need to monitor them continuously during periods of several days, weeks, or even months. Recently, portable devices have become available. Two categories of portable devices are considered in this research paper: connected objects for the general public (price <500 €) and monitoring portable devices for professional users (price in the range >500 to 5000 €). The ISO method (ISO 16000-29) describes the standard for VOC detector qualification. It is quite complex and is not well adapted for a first qualitative evaluation of these low-cost devices. In this paper, we present an experimental methodology used to evaluate commercial devices that monitor formaldehyde and/or total volatile organic compounds (TVOC) under controlled conditions (23 °C, 50–65% relative humidity (RH)). We conclude that none of the connected objects dedicated to the general public can provide reliable data in the conditions tested, not even for a qualitative evaluation. For formaldehyde monitoring, we obtained some promising results with a portable device dedicated to professional users. In this paper, we illustrate, with a real test case in an office building, how this device was used for a comparative analysis.


2020 ◽  
Vol 44 (38) ◽  
pp. 16613-16625
Author(s):  
Radha Bhardwaj ◽  
Venkatarao Selamneni ◽  
Uttam Narendra Thakur ◽  
Parikshit Sahatiya ◽  
Arnab Hazra

In the current study, noble metal nanoparticle functionalized MoS2 coated biodegradable low-cost paper sensors were fabricated for the selective detection of low concentrations of volatile organic compounds (VOCs).


2014 ◽  
Vol 1015 ◽  
pp. 540-543
Author(s):  
Bo Tao Lin ◽  
Dong Mei Shi ◽  
Tao Li ◽  
Sen Kuan Meng

TiO2photocatalytic technology was developed in the past two decades in air treatment because of good photocatalytic effect, non-toxic, chemical stability, low cost, reusable features, the effect use of solar energy. A new composite materials of visible light photocatalytic degradation of low concentration of volatile organic compounds were produced by use of combining the adsorbent with TiO2photocatalytic technology.The adsorbent can enrich concentrations of volatile organic compounds on the surface of the TiO2photocatalyst. In this paper,the mechanism of the combined adsorption-photocatalysis for the removal of volatile organic compounds and immobilization methods、principle、craft were reviewed.The characteristic of the immobilization methods was analysed.It laid the foundation for the optimizing of the immobilization methods and the improving of the photocatalytic efficiency.


Sensors ◽  
2017 ◽  
Vol 17 (7) ◽  
pp. 1520 ◽  
Author(s):  
Laurent Spinelle ◽  
Michel Gerboles ◽  
Gertjan Kok ◽  
Stefan Persijn ◽  
Tilman Sauerwald

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 233 ◽  
Author(s):  
Tingting Lin ◽  
Xin Lv ◽  
Zhineng Hu ◽  
Aoshu Xu ◽  
Caihui Feng

Volatile organic compounds (VOCs), which originate from painting, oil refining and vehicle exhaust emissions, are hazardous gases that have significant effects on air quality and human health. The detection of VOCs is of special importance to environmental safety. Among the various detection methods, chemoresistive semiconductor metal oxide gas sensors are considered to be the most promising technique due to their easy production, low cost and good portability. Sensitivity is an important parameter of gas sensors and is greatly affected by the microstructure, defects, catalyst, heterojunction and humidity. By adjusting the aforementioned factors, the sensitivity of gas sensors can be improved further. In this review, attention will be focused on how to improve the sensitivity of chemoresistive gas sensors towards certain common VOCs with respect to the five factors mentioned above.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Jiaqi Li ◽  
Hui Liu ◽  
Yuzhou Deng ◽  
Gang Liu ◽  
Yunfa Chen ◽  
...  

AbstractThe strong growing interest in using catalytic oxidation to remove volatile organic compounds (VOCs), which seriously threaten the health of human being, is rooted in its desirable features such as relative energy savings, low cost, operation safety and environmental friendliness. Within the last decades, the development of manufacturing processes, characterization techniques and testing methods has led to the blossom of research in synthesis and application of various nanostructured materials, which creates great opportunities and also a tremendous challenge to apply these materials for highly efficient catalytic removal of VOCs. We herein will systematically introduce the latest research developments of nanostructured materials for the catalytic degradation of VOCs so as to provide the readers a coherent picture of the field, mainly focusing on noble metals and metal oxides, which are currently two primary types of VOC catalysts. This review will focus on synthesis, fabrication and processing of nanostructured noble metals and metal oxides as well as the fundamentals and technical approaches in catalytic removal of VOCs, providing technical strategies for effectively developing novel nanostructured catalysts with low cost, enhanced activity and high stability for pollutant removal from surrounding environments.


2018 ◽  
Vol 7 (1) ◽  
pp. 373-388 ◽  
Author(s):  
Alejandro Moreno-Rangel ◽  
Tim Sharpe ◽  
Filbert Musau ◽  
Gráinne McGill

Abstract. Measurements of temporal and spatial changes to indoor contaminant concentrations are vital to understanding pollution characteristics. Whilst scientific instruments provide high temporal resolution of indoor pollutants, their cost and complexity make them unfeasible for large-scale projects. Low-cost monitors offer an opportunity to collect high-density temporal and spatial data in a broader range of households. This paper presents a user study to assess the precision, accuracy, and usability of a low-cost indoor air quality monitor in a residential environment to collect data about the indoor pollution. Temperature, relative humidity, total volatile organic compounds (tVOC), carbon dioxide (CO2) equivalents, and fine particulate matter (PM2.5) data were measured with five low-cost (“Foobot”) monitors and were compared with data from other monitors reported to be scientifically validated. The study found a significant agreement between the instruments with regard to temperature, relative humidity, total volatile organic compounds, and fine particulate matter data. Foobot CO2 equivalent was found to provide misleading CO2 levels as indicators of ventilation. Calibration equations were derived for tVOC, CO2, and PM2.5 to improve sensors' accuracy. The data were analysed based on the percentage of time pollutant levels that exceeded WHO thresholds. The performance of low-cost monitors to measure total volatile organic compounds and particulate matter 2.5 µm has not been properly addressed. The findings suggest that Foobot is sufficiently accurate for identifying high pollutant exposures with potential health risks and for providing data at high granularity and good potential for user or scientific applications due to remote data retrieval. It may also be well suited to remote and larger-scale studies in quantifying exposure to pollutants.


Sign in / Sign up

Export Citation Format

Share Document