scholarly journals Utilization of Waste Polysilicon Sludge in Concrete

Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 251 ◽  
Author(s):  
Abdul Qudoos ◽  
In Kyu Jeon ◽  
Seong Soo Kim ◽  
Jeong Bae Lee ◽  
Hong Gi Kim

Increasing use of cement in the construction industry is causing an alarming increase in carbon dioxide (CO2) emissions, which is a serious environmental threat, it can be reduced by the addition of supplementary cementitious materials (SCMs). The commonly used SCMs like ground granulated blast furnace slag (GGBS), metakaolin (MK) and fly ash (FA) have been successfully used to replace the cement partially or completely. Polysilicon sludge obtained from the photovoltaic industry is also a type of waste material that can be used as SCM because it has high content of reactive SiO2. This study investigates the effects of replacing cement with polysilicon sludge in concrete. Different concrete specimens were made by replacing varying proportions of cement with polysilicon sludge and their properties, such as, fresh properties, compressive strength, heat release, chloride penetration, freeze/thaw resistance and microstructural investigations were determined. The results demonstrate that the polysilicon sludge can be used effectively to replace cement, and environmental threats associated with its disposal can be reduced.

2017 ◽  
Vol 2 (6) ◽  
pp. 36
Author(s):  
Jhon Kamau ◽  
Ash Ahmed ◽  
Paul Hirst ◽  
Joseph Kangwa

Cement is the most utilised material after water, and the processes that are involved in making it are energy intensive, contributing to about 7% of the total global anthropogenic carbon dioxide (CO2). Energy efficiency can however be achieved by using Supplementary Cementitious Materials (SCMs) such as Pulverised Fuel Ash (PFA) and Ground Granulated Blast Furnace Slag (GGBS) which demand less process heating and emit fewer levels of CO2. This work examined the advantages of substituting cement using PFA and GGBS in ternary (2 SCMs) concrete at steps of 0%, 5%, 7.5%, 10%, 15%, 20%, 25%, and 30%. It was found that PFA increased the workability of GGBS, whereas GGBS improved the strength of PFA. The densities of the resultant concrete were below those of the 0% replacement as well as those of individual binary (1 SCM) concretes. The tensile strengths of the ternary concrete were lower than those of the binary concretes, whereas the gains in compressive strengths over curing time were higher at lower replacements for the ternary concrete compared with the 0% replacement and the binary concretes, but lower at higher replacements. The findings indicate that PFA and GGBS could be used together to improve the properties of concrete where each falls short.


2020 ◽  
Vol 853 ◽  
pp. 142-149
Author(s):  
Ahmad Khartabil ◽  
Samer Al Martini

Understanding the thermal properties of a construction material is necessarily to evaluate its heat transfer resistance that has a major contribution to the energy-efficiency required to achieve sustainable structure. Thermal properties are evaluated through three main parameters namely: thermal conductivity, thermal resistivity and thermal transmittance. The aforementioned parameters are commonly referred as K-value, R-value, and U-value respectively. Recent regulations by Dubai municipality enforced to use sustainable concrete in construction. This is by replacing cement with supplementary cementitious materials (SCMs), such as grand granulated blast furnace slag (GGBS) and fly ash. The use of grand granulated blast furnace slag (GGBS) at relatively high percentage replacement became a typical practice in ready-mixed concrete industry in Dubai. As such, it is essential to characterize the thermal properties of this sustainable concrete. The current paper investigates the thermal properties of sustainable concrete mixtures incorporating supplementary cementitious materials, air entrainment additives, polypropylene and hybrid synthetic fiber. K-value, R-value and U-value are evaluated in accordance with ASTM C518. Additionally, hardened density of all investigated mixtures are measured. The results show that the foamed concrete has better heat transfer resistance than that for the non-air entrained mixture.


2020 ◽  
Vol 853 ◽  
pp. 193-197
Author(s):  
Samer Al Martini ◽  
Ziad Hassan ◽  
Ahmad Khartabil

The effects of aggregate size and supplementary cementitious materials (SCMs) on the rheology of self-consolidating concrete (SCC) were studied in this paper. Two main concrete mixtures with different maximum aggregate sizes were prepared and investigated. The first mix had a maximum size aggregate of 5 mm and the second mix was with 20 mm max size aggregates. All mixes incorporated different dosages of Ground granulated blast furnace slag (GGBS). The rheology of all mixes investigated was measured over 2 hour time period. It was found that the size of aggregates and GGBS dosage have influence on the yield stress of studied concrete mixes.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5190
Author(s):  
Laura Boquera ◽  
David Pons ◽  
Ana Inés Fernández ◽  
Luisa F. Cabeza

Six supplementary cementitious materials (SCMs) were identified to be incorporated in concrete exposed to high-temperature cycling conditions within the thermal energy storage literature. The selected SCMs are bauxite, chamotte, ground granulated blast furnace slag, iron silicate, silica fume, and steel slag. A microstructural characterization was carried out through an optical microscope, X-ray diffraction analysis, and FT-IR. Also, a pozzolanic test was performed to study the reaction of SCMs silico-aluminous components. The formation of calcium silica hydrate was observed in all SCMs pozzolanic test. Steel slag, iron silicate, and ground granulated blast furnace slag required further milling to enhance cement reaction. Moreover, the tensile strength of three fibers (polypropylene, steel, and glass fibers) was tested after exposure to an alkalinity environment at ambient temperature during one and three months. Results show an alkaline environment entails a tensile strength decrease in polypropylene and steel fibers, leading to corrosion in the later ones.


10.29007/81v5 ◽  
2018 ◽  
Author(s):  
Ashika Shah ◽  
Indrajit Patel ◽  
Jagruti Shah ◽  
Gaurav Gohil

In the production of Self Compacting concrete (SCC), the use of quaternary blend of supplementary cementitious materials (SCM’s) has not found enough applications. For this purpose, an effort has been done to present a mix design for M60 grade and M80 grade SCC with quaternary blending of fly ash(FA), ground granulated blast furnace slag (GGBS), silica fume (SF) in accordance with EFNARC guidelines. Findings: In this study, cement has been replaced with SCM’s from 30% to 50%. Fresh properties of concrete were tested for slump flow, T50 test and U box. The hardened properties of concrete were tested for compressive strength and durability. The tests were performed for 7, 28, 56 and 91 days. The results indicate that the use of quaternary blend has improved the workability, compressive strength and durability properties of specimens than the control specimen. Application: The primary contribution is to fill the congestedreinforcement and increase the durability and life span of the structure.


2020 ◽  
Vol 16 (3) ◽  
pp. 185
Author(s):  
Rizki Amalia Tri Cahyani ◽  
Ernawan Setyono ◽  
Yunan Rusdianto

Serangan sulfat (sulfate attack) termasuk hal yang umum terjadi pada struktur beton, mengingat ion sulfat banyak dijumpai pada tanah, air tanah dan air laut. Peningkatan ketahanan beton melawan sulfat akan berdampak besar pada durabilitas dan umur layan struktur beton. Penambahan supplementary cementitious materials seperti GGBFS (ground granulated blast furnace slag) ke campuran beton telah terbukti memberikan pengaruh positif terhadap durabilitas dan properti mekanis beton. Namun, GGBFS tergolong material yang baru dikembangkan di Indonesia dan potensinya dalam meningkatkan durabilitas beton belum dimanfaatkan secara luas. Berdasarkan hal tersebut, perlu dilakukan investigasi terkait aplikasi GGBFS dan pengaruhnya terhadap durabilitas beton, terutama dalam melawan serangan sulfat. Dalam studi ini, durabilitas beton dengan persentase penggantian GGBFS 30%, 50% dan 70% terhadap total volume binder dievaluasi menggunakan perlakuan siklus basah-kering dalam larutan magnesium sulfat. Tingkat degradasi beton diukur dengan melakukan observasi terhadap perubahan kuat tekan dan massa spesimen akibat serangan sulfat. Hasil penelitian menunjukkan bahwa penggantian GGBFS hingga 50% dari total volume binder dapat meningkatkan ketahanan beton terhadap serangan sulfat, ditunjukkan dengan kehilangan massa dan reduksi kekuatan yang lebih rendah dibandingkan spesimen kontrol dengan 100% semen Portland.


2021 ◽  
Vol 17 ◽  
pp. 271-281
Author(s):  
Efstratios Badogiannis ◽  
Eirhnh Makrinou ◽  
Marianna Fount

A study on the durability parameters of normal and lightweight aggregate mortars, incorporated different supplementary cementitious materials (SCM) is presented. Mortars were prepared using limestone or pumice as aggregates and Metakaolin, Fly ash, Granulated Blast Furnace Slag and Silica Fume, as SCM, that they replaced cement, at 10 % by mass. Ten different mortars, having same water to binder ratio and aggregate to cement volumetric ratio, they were compared mainly in terms of durability. The use of pumice sand was proved to be effective not only to the density of the mortars as it was expected, but also in durability, fulfilling at the same time minimum strength requirements. The addition of the different SCM further enhanced the durability of the mortars, where Metakaolin was found to be the most effective one, especially against chloride’s ingress.


2014 ◽  
Vol 905 ◽  
pp. 287-291
Author(s):  
Salim Barbhuiya ◽  
Hamid Nikraz

The global development and current trends in social attitude are resulting in an increase in the amount of waste generated by society, the treatment and disposal of which are becoming a serious problem. Therefore, waste management is one of the most important aspects in ensuring sustainable development in todays world. Some of the industrial by-products, such as pulverised-fuel ash (PFA), ground granulated blast-furnace slag (GGBS) and microsilica (MS) can be used in concrete to improve its properties. In this paper the influence of various by-products on the physical properties of concrete is reviewed.


Sign in / Sign up

Export Citation Format

Share Document