scholarly journals Continuous Ultrasonic Reactors: Design, Mechanism and Application

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 344 ◽  
Author(s):  
Zhengya Dong ◽  
Claire Delacour ◽  
Keiran Mc Carogher ◽  
Aniket Pradip Udepurkar ◽  
Simon Kuhn

Ultrasonic small scale flow reactors have found increasing popularity among researchers as they serve as a very useful platform for studying and controlling ultrasound mechanisms and effects. This has led to the use of these reactors for not only research purposes, but also various applications in biological, pharmaceutical and chemical processes mostly on laboratory and, in some cases, pilot scale. This review summarizes the state of the art of ultrasonic flow reactors and provides a guideline towards their design, characterization and application. Particular examples for ultrasound enhanced multiphase processes, spanning from immiscible fluid–fluid to fluid–solid systems, are provided. To conclude, challenges such as reactor efficiency and scalability are addressed.

2018 ◽  
Vol 3 (4) ◽  
pp. 399-413 ◽  
Author(s):  
Patrick Giraudeau ◽  
François-Xavier Felpin

The state-of-the-art flow reactors integrated with in-line benchtop NMR are thoroughly discussed with highlights on the strengths and weaknesses of this emerging technology.


2020 ◽  
Vol 34 (05) ◽  
pp. 8285-8292
Author(s):  
Yanyang Li ◽  
Qiang Wang ◽  
Tong Xiao ◽  
Tongran Liu ◽  
Jingbo Zhu

Though early successes of Statistical Machine Translation (SMT) systems are attributed in part to the explicit modelling of the interaction between any two source and target units, e.g., alignment, the recent Neural Machine Translation (NMT) systems resort to the attention which partially encodes the interaction for efficiency. In this paper, we employ Joint Representation that fully accounts for each possible interaction. We sidestep the inefficiency issue by refining representations with the proposed efficient attention operation. The resulting Reformer models offer a new Sequence-to-Sequence modelling paradigm besides the Encoder-Decoder framework and outperform the Transformer baseline in either the small scale IWSLT14 German-English, English-German and IWSLT15 Vietnamese-English or the large scale NIST12 Chinese-English translation tasks by about 1 BLEU point. We also propose a systematic model scaling approach, allowing the Reformer model to beat the state-of-the-art Transformer in IWSLT14 German-English and NIST12 Chinese-English with about 50% fewer parameters. The code is publicly available at https://github.com/lyy1994/reformer.


2019 ◽  
Vol 72 (1) ◽  
Author(s):  
Lili Gu ◽  
Eliott Guenat ◽  
Jürg Schiffmann

Abstract This paper offers an extensive review of publications dealing with the modeling, the design, and the experimental investigation of grooved dynamic gas-lubricated bearings. Recent years have witnessed a rise in small-scale and high-speed turbomachinery applications. Besides the well-known gas foil bearings, grooved bearings offer attractive advantages, which unveil their potential in particular at small scale due to the structural simplicity as well as satisfying predictability. This paper starts with a general background of the application of gas-lubricated bearings and introduces and compares the different gas bearing topologies. Further, the state-of-the-art modeling of grooved gas-lubricated bearings is introduced, systematically assessing the advantages and inconveniences of two major approaches, i.e., the narrow groove theory (NGT) and direct discretization method. Since the NGT method is an elegant and efficient approach to model the complex effects of periodic grooves, a critical section is dedicated to the NGT. In a second phase, different models to include additional physical phenomena such as real gas lubrication, rarefaction, or turbulence effects are reviewed. The paper concludes with a critical assessment of the state-of-the-art and indicates potential fields of research that would allow to shed more light into the understanding of these bearings, as well as with some thoughts on the integrated design methodologies of gas bearing supported rotors.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Siddhant Jain ◽  
Ujjwal K. Saha

Abstract There has been a resurgence of interest in the development of small-scale vertical-axis wind turbines (VAWTs) in the past few decades as is evident from the plethora of published scientific work. This attention may be attributed to the desperate need for cheaper, cleaner, and off-grid mechanisms for generating electric power. In such hasty scenario, VAWTs are being considered as one of the potential solution for small-scale power generation. Among the VAWTs, H-type Darrieus rotors have undergone extensive exploration. In this review work, an attempt has been made to assemble all the major areas of research done in the field of H-type Darrieus rotor development. These areas include the aerodynamic models, computational fluid dynamics (CFD) methods and turbulence models, self-starting and dynamic stalling behavior, blade-vortex interaction and wake studies, and blade designs and optimization studies, besides topics of special interest like blade curvature effects and skewed flows. Overall, the work gives a comprehensive review of the state-of-the-art technology of the H-type Darrieus rotor. Finally, recommendations have been made for each of the areas keeping in view of the technological development.


Author(s):  
Wei Qiu ◽  
Haipeng Chen ◽  
Bo An

Over the past decades, Electronic Toll Collection (ETC) systems have been proved the capability of alleviating traffic congestion in urban areas. Dynamic Electronic Toll Collection (DETC) was recently proposed to further improve the efficiency of ETC, where tolls are dynamically set based on traffic dynamics. However, computing the optimal DETC scheme is computationally difficult and existing approaches are limited to small scale or partial road networks, which significantly restricts the adoption of DETC. To this end, we propose a novel multi-agent reinforcement learning (RL) approach for DETC. We make several key contributions: i) an enhancement over the state-of-the-art RL-based method with a deep neural network representation of the policy and value functions and a temporal difference learning framework to accelerate the update of target values, ii) a novel edge-based graph convolutional neural network (eGCN) to extract the spatio-temporal correlations of the road network state features, iii) a novel cooperative multi-agent reinforcement learning (MARL) which divides the whole road network into partitions according to their geographic and economic characteristics and trains a tolling agent for each partition. Experimental results show that our approach can scale up to realistic-sized problems with robust performance and significantly outperform the state-of-the-art method.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

Sign in / Sign up

Export Citation Format

Share Document