scholarly journals The Influence of Light Irradiation on the Photocatalytic Degradation of Organic Pollutants

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2494
Author(s):  
Alexandru Enesca ◽  
Luminita Isac

The design of a photocatalytic process must consider intrinsic and extrinsic parameters affecting its overall efficiency. This study aims to outline the importance of balancing several factors, such as radiation source, total irradiance, photon flux, catalyst substrate, and pollutant type in order to optimize the photocatalytic efficiency. Titanium oxide was deposed by the doctor blade technique on three substrates (microscopic glass (G), flour-doped tin oxide (FTO), and aluminum (Al)), and the photocatalytic properties of the samples were tested on two pollutants (tartrazine (Tr) and acetamiprid (Apd)). Seven irradiation scenarios were tested using different ratios of UV-A, UV-B + C, and Vis radiations. The results indicated that the presence of a conductive substrate and a suitable ratio of UV-A and Vis radiations could increase the photocatalytic efficiency of the samples. Higher efficiencies were obtained for the sample Ti_FTO (58.3% for Tr and 70.8% for Apd) and the sample Ti_Al (63.8% for Tr and 82.3% for Apd) using a mixture of three UV-A and one Vis sources (13.5 W/m2 and 41.85 μmol/(m2·s)). A kinetic evaluation revealed two different mechanisms of reaction: (a) a one-interval mechanism related to Apd removal by Ti_FTO, Ti_Al (scenarios 1, 4, 5, and 7), and Ti_G samples (scenario 7) and (b) a two-interval mechanism in all other cases.

2019 ◽  
Vol 36 (2) ◽  
pp. 130-150 ◽  
Author(s):  
Bor-Jiunn Wen ◽  
Shih-An Huang ◽  
Ting-Yu Tseng

The purpose of this study is to analyze the performance of the flexible conductive substrate by interfacial shear stress. This study performed automatic liquid-crystal modulating common-path interferometry (LMCI) optical inspections on 125-µm polyethylene terephthalate (PET) substrates having indium tin oxide (ITO) coating thicknesses of 80 nm, 160 nm, and 230 nm. The nonlinear characteristic of the stress-optical coefficient of the ITO material is obtained using LMCI. To validate the performance of the flexible conductive substrate, this study has utilized an automatic sliding-folding testing platform (ASTP) for a whole-folding test. Eventually, this study successfully has utilized interface shear stresses to validate the performance of the flexible conductive substrate depended on the different thicknesses of the conductive layers for whole-folding test by using LMCI and ASTP. According to the measurement results, as the folding radii decrease and the ITO thicknesses of ITO-coated PET substrates increase, the changes of interfacial shear stresses increase in compressive direction and the change-rates of electrical resistance of ITO-coated PET substrate also increase. Therefore, the interfacial shear stress measurement and analysis results depicted on flexible conductive substrates provide a validation for improving the manufacturing process and for reducing process residual stresses.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Van Luan Tran ◽  
Huei-Yung Lin

The ability to reliably measure the depth of the object surface is very important in a range of high-value industries. With the development of 3D vision techniques, RGB-D cameras have been widely used to perform the 6D pose estimation of target objects for a robotic manipulator. Many applications require accurate shape measurements of the objects for 3D template matching. In this work, we develop an RGB-D camera based on the structured light technique with gray-code coding. The intrinsic and extrinsic parameters of the camera system are determined by a calibration process. 3D reconstruction of the object surface is based on the ray triangulation principle. We construct an RGB-D sensing system with an industrial camera and a digital light projector. In the experiments, real-world objects are used to test the feasibility of the proposed technique. The evaluation carried out using planar objects has demonstrated the accuracy of our RGB-D depth measurement system.


2011 ◽  
Vol 230-232 ◽  
pp. 723-727 ◽  
Author(s):  
Bao Feng Zhang ◽  
Xiu Zhen Tian ◽  
Xiao Ling Zhang

In order to simplify previous camera calibration method, this paper put forward an easy camera calibration method based on plane grid points on the foundation of Heikkila plane model calibration method. Intrinsic and extrinsic parameters of the camera are calibrated with MATLAB, then the rotation matrix and the translation vector are calculated. The experiment results show this method is not only simple in practice, but also can meet the needs of computer vision systems.


Nano Letters ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 5547-5554 ◽  
Author(s):  
Yue Zhang ◽  
Ying Diao ◽  
Hyunbok Lee ◽  
Timothy J. Mirabito ◽  
Richard W. Johnson ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 1896-1901
Author(s):  
Hong Zheng ◽  
Zhen Qiang Liu ◽  
Kai Zhang

Self-calibration of stereo rig is essential to many computer vision applications. In this paper, a new self-calibration method is proposed for a binocular stereo rig undergoing a single motion with varying intrinsic and extrinsic parameters. Firstly, we build up a stereo rig model based on the basic platform to describe the transformation of the stereo rig during the motion. Secondly, the characteristics of singular values of the essential matrix are used to estimate the intrinsic parameters of camera. Finally, analyzing the transformation relation between different views, the relative position of cameras and motion of the stereo rig are estimated. Experimental results for both synthetic data and real images are provided to show the performance of the proposed method.


2020 ◽  
Vol 10 (20) ◽  
pp. 7188
Author(s):  
Lode Jorissen ◽  
Ryutaro Oi ◽  
Koki Wakunami ◽  
Yasuyuki Ichihashi ◽  
Gauthier Lafruit ◽  
...  

Light field 3D displays require a precise alignment between the display source and the micromirror-array screen for error free 3D visualization. Hence, calibrating the system using an external camera becomes necessary, before displaying any 3D contents. The inter-dependency of the intrinsic and extrinsic parameters of display-source, calibration-camera, and micromirror-array screen, makes the calibration process very complex and error-prone. Thus, several assumptions are made with regard to the display setup, in order to simplify the calibration. A fully automatic calibration method based on several such assumptions was reported by us earlier. Here, in this paper, we report a method that uses no such assumptions, but yields a better calibration. The proposed method adapts an optical solution where the micromirror-array screen is fabricated as a computer generated hologram with a tiny diffuser engraved at one corner of each elemental micromirror in the array. The calibration algorithm uses these diffusing areas as markers to determine the relation between the pixels of display source and the mirrors in the micromirror-array screen. Calibration results show that virtually reconstructed 3D scenes align well with the real world contents, and are free from any distortion. This method also eliminates the position dependency of display source, calibration-camera, and mirror-array screen during calibration, which enables easy setup of the display system.


Sign in / Sign up

Export Citation Format

Share Document