scholarly journals Investigation of Thermophysical Properties of AW-2024-T3 Bare and Clad Aluminum Alloys

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3345
Author(s):  
Janusz Zmywaczyk ◽  
Judyta Sienkiewicz ◽  
Piotr Koniorczyk ◽  
Jan Godzimirski ◽  
Mateusz Zieliński

In this paper, thermophysical and viscoelastic dynamic mechanical measurements (DMA) were performed for bare and clad aluminum AW-2024-T3 alloys. Specific heat, thermal diffusivity, and dynamic module (storage and loss) tests were performed in the range of 50 to 500 °C, except for DMA ones (RT–400 °C). All tests were carried out using the following specialized measuring stands: a light flash apparatus (LFA), differential scanning calorimeter (DSC), and a dynamic mechanical analyzer (DMA). The microstructures and compositions of alloys were investigated by light microscope (LM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS). Furthermore, Vickers micro-hardness measurements were conducted prior to and after DSC studies. Different precipitation kinetics of the θ′ and S′ metastable phases in the bare 2024-T3 compared to the clad alloy were observed by DSC. Additionally, the DSC results for a few selected scan rates were analyzed by the Kissinger method to give activation energies for the precipitation of θ′ and S′ metastable phases in the alloys. The apparent activation energy of the θ′ and S′ phases corresponds to 137.1 ± 4.4 kJ· mol−1 for the bare alloy and 131.0 ± 6.0 (exo) and 104.1 ± 2.1 (exo) (two peaks) for the clad alloy.

2021 ◽  
Vol 5 (3) ◽  
pp. 80
Author(s):  
George Youssef ◽  
Scott Newacheck ◽  
Nha Uyen Huynh ◽  
Carlos Gamez

Fiber-reinforced polymer matrix composites continue to attract scientific and industrial interest since they offer superior strength-, stiffness-, and toughness-to-weight ratios. The research herein characterizes two sets of E-Glass/Epoxy composite skins: stressed and unstressed. The stressed samples were previously installed in an underground power distribution vault and were exposed to fire while the unstressed composite skins were newly fabricated and never-deployed samples. The mechanical, morphological, and elemental composition of the samples were methodically studied using a dynamic mechanical analyzer, a scanning electron microscope (SEM), and an x-ray diffractometer, respectively. Sandwich composite panels consisting of E-glass/Epoxy skin and balsa wood core were originally received, and the balsa wood was removed before any further investigations. Skin-only specimens with dimensions of ~12.5 mm wide, ~70 mm long, and ~6 mm thick were tested in a Dynamic Mechanical Analyzer in a dual-cantilever beam configuration at 5 Hz and 10 Hz from room temperature to 210 °C. Micrographic analysis using the SEM indicated a slight change in morphology due to the fire event but confirmed the effectiveness of the fire-retardant agents in quickly suppressing the fire. Accompanying Fourier transform infrared and energy dispersive X-ray spectroscopy studies corroborated the mechanical and morphological results. Finally, X-ray diffraction showed that the fire event consumed the surface level fire-retardant and the structural attributes of the E-Glass/Epoxy remained mainly intact. The results suggest the panels can continue field deployment, even after short fire incident.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


2021 ◽  
Vol 126 (9) ◽  
Author(s):  
Nafisa Begam ◽  
Anastasia Ragulskaya ◽  
Anita Girelli ◽  
Hendrik Rahmann ◽  
Sivasurender Chandran ◽  
...  

2013 ◽  
Vol 834-836 ◽  
pp. 531-535
Author(s):  
Li Yan Yang ◽  
Yi Hui Guo ◽  
Li Li Yu ◽  
Jing You

A type of cross-linking starch microsphere (CSMs) has been synthesized via reversed phase suspension method. Crosslinked starch microsphere has good adsorption performance to metal ions in water. The adsorption kinetics of Co (II) on the CSMs, selectivity of adsorption CSMs towards Co (II),Cu (II),Pb (II),Cd (II) and adsorption effects of media towards Co (II) were investigated. The CSMs and its adsorption product were comparatively characterized by X-ray diffraction (XRD). The results showed that The adsorption rate is mainly controlled by liquid film diffusion, and the constant of adsorption rate is 0.0686min-1 at 308K. The crystal structure of the CSMs decreased greatly after the incorporation of Co (II). Co (II) has better adsorption selectivity on CSMs. Ions coexist and other substances in the solution have certain impact on adsorption. Those data are helpful for treatment of the wastewater containing heavy ions.


Sign in / Sign up

Export Citation Format

Share Document