scholarly journals A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4851
Author(s):  
Mazhar Abbas ◽  
Linxiang Zeng ◽  
Fei Guo ◽  
Muhammad Rauf ◽  
Xiao-Cong Yuan ◽  
...  

Although the efficiency of small-size perovskite solar cells (PSCs) has reached an incredible level of 25.25%, there is still a substantial loss in performance when switching from small size devices to large-scale solar modules. The large efficiency deficit is primarily associated with the big challenge of coating homogeneous, large-area, high-quality thin films via scalable processes. Here, we provide a comprehensive understanding of the nucleation and crystal growth kinetics, which are the key steps for perovskite film formation. Several thin-film crystallization techniques, including antisolvent, hot-casting, vacuum quenching, and gas blowing, are then summarized to distinguish their applications for scalable fabrication of perovskite thin films. In viewing the essential importance of the film morphology on device performance, several strategies including additive engineering, Lewis acid-based approach, solvent annealing, etc., which are capable of modulating the crystal morphology of perovskite film, are discussed. Finally, we summarize the recent progress in the scalable deposition of large-scale perovskite thin film for high-performance devices.

RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 14147-14153 ◽  
Author(s):  
Youngho Kim ◽  
Sang Hoon Lee ◽  
Seyoung Jeong ◽  
Bum Jun Kim ◽  
Jae-Young Choi ◽  
...  

We heat-treated an amorphous large-area WO3 thin film to synthesize high-density, high-quality WO3 nanorods.


Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 547-557 ◽  
Author(s):  
Ming-Hua Yeh ◽  
Shih-Jung Ho ◽  
Guang-Hong Chen ◽  
Chang-Wei Yeh ◽  
Pin-Ru Chen ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 295
Author(s):  
Tianzhao Dai ◽  
Qiaojun Cao ◽  
Lifeng Yang ◽  
Mahmoud Aldamasy ◽  
Meng Li ◽  
...  

Perovskite solar cells (PSCs) have received a great deal of attention in the science and technology field due to their outstanding power conversion efficiency (PCE), which increased rapidly from 3.9% to 25.5% in less than a decade, comparable to single crystal silicon solar cells. In the past ten years, much progress has been made, e.g. impressive ideas and advanced technologies have been proposed to enlarge PSC efficiency and stability. However, this outstanding progress has always been referred to as small-area (<0.1 cm2) PSCs. Little attention has been paid to the preparation processes and their micro-mechanisms for large-area (>1 cm2) PSCs. Meanwhile, scaling up is an inevitable way for large-scale application of PSCs. Therefore, we firstly summarize the current achievements for high efficiency and stability large-area perovskite solar cells, including precursor composition, deposition, growth control, interface engineering, packaging technology, etc. Then we include a brief discussion and outlook for the future development of large-area PSCs in commercialization.


2016 ◽  
Vol 4 (32) ◽  
pp. 12463-12470 ◽  
Author(s):  
Wu-Qiang Wu ◽  
Dehong Chen ◽  
Fuzhi Huang ◽  
Yi-Bing Cheng ◽  
Rachel A. Caruso

Combined hydrothermal treatment, gas-assisted spin coating and mixed vapor annealing approaches can effectively optimize the semiconducting networks in thin film perovskite photovoltaic devices, which leads to efficient light harvesting, suppressed charge recombination and effective charge extraction.


1989 ◽  
Vol 149 ◽  
Author(s):  
Jack L. Stone

ABSTRACTSignificant deployment of the promising option of photovoltaics for energy will require cost-effective technologies that compete effectively with conventional sources. One such option utilizes thin films of a variety of photovoltaic materials. These thin films must be manufacturable in large quantities, and they must have high performance and acceptable reliability. Amorphous silicon (a-Si) was the first successfully demonstrated thin film to be widely adopted by industry. This material is already used to power a larger number of such consumer products as calculators, watches, and battery chargers. Recently, a-Si solar cells have been scaled up to large-area modules for power applications. Large fields of these modules have been deployed by utility companies for their evaluation. Polycrystalline thin films such as copper indium diselenide (CIS) and cadmium telluride (CdTe) have recently shown promise in following the path of a-Si. High-efficiency, large-area submodules have been successfully tested. By combining these materials in hybrid combinations, researchers have demonstrated much higher efficiencies. Even higher efficiencies have been demonstrated with more conventional materials such as silicon and gallium arsenide in thin-film form. Such devices have a high degree of acceptability because of their successful application for power uses in their non-thin-film form. Extensive examples are given to demonstrate the technical viability of these photovoltaic approaches for possible use in utility-scale power plants and in other near-term, highvalue markets.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2021 ◽  
Vol 9 (13) ◽  
pp. 4522-4531
Author(s):  
Chao Yun ◽  
Matthew Webb ◽  
Weiwei Li ◽  
Rui Wu ◽  
Ming Xiao ◽  
...  

Interfacial resistive switching and composition-tunable RLRS are realized in ionically conducting Na0.5Bi0.5TiO3 thin films, allowing optimised ON/OFF ratio (>104) to be achieved with low growth temperature (600 °C) and low thickness (<20 nm).


2021 ◽  
pp. 2002733
Author(s):  
Xu Zhang ◽  
Tinghuan Yang ◽  
Xiaodong Ren ◽  
Lu Zhang ◽  
Kui Zhao ◽  
...  

2021 ◽  
Vol 17 ◽  
pp. 100352
Author(s):  
S.-J. Wang ◽  
M. Sawatzki ◽  
H. Kleemann ◽  
I. Lashkov ◽  
D. Wolf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document