scholarly journals Effects of Sintering Temperature Variation on Synthesis of Glass-Ceramic Phosphor Using Rice Husk Ash as Silica Source

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5413
Author(s):  
Rabiatul Adawiyah Abdul Wahab ◽  
Mohd Hafiz Mohd Zaid ◽  
Sidek Hj. Ab Aziz ◽  
Khamirul Amin Matori ◽  
Yap Wing Fen ◽  
...  

In this study, the authors attempted to propose the very first study on fabrication and characterization of zinc-boro-silicate (ZBS) glass-ceramics derived from the ternary zinc-boro-silicate (ZnO)0.65(B2O3)0.15(RHA)0.2 glass system through a conventional melt-quenching method by incorporating rice husk ash (RHA) as the silica (SiO2) source, followed by a sintering process. Optimization of sintering condition has densified the sintered samples while embedded beta willemite (β-Zn2SiO4) and alpha willemite (α-Zn2SiO4) were proven in X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) has shown the distribution of willemite crystals in rhombohedral shape crystals and successfully form closely-packed grains due to intense crystallization. The photoluminescence (PL) spectra of all sintered ZBS glasses presented various emission peaks at 425, 463, 487, 531, and 643 nm corresponded to violet, blue, green, and red emission, respectively. The correlation between the densification, phase transformation, microstructure, and photoluminescence of Zn2SiO4 glass-ceramic phosphor is discussed in detail.

2020 ◽  
Vol 840 ◽  
pp. 311-317
Author(s):  
Muhamad Ghadafi ◽  
Sri Juari Santosa ◽  
Yuichi Kamiya ◽  
Nuryono Nuryono

In this research, we report the use of free sodium and less Fe ion silica (SiO2) for preparation of White Mineral Trioxide Aggregate (WMTA). SiO2 was extracted from rice husk ash (RHA) using NaOH 2 M and HCl 37% (v/v) and removal of Na was performed by washing the extracted SiO2 using deionized water with various volumes and techniques. Before extraction, RHA was calcined at a temperature of 700 °C for 3 h. Preparation of WMTA began with mixing the extracted SiO2 20%, CaO 60%, Al2O3 2%, and Bi2O3 18% (w/w). The mixture was calcined at temperatures of 1100 °C for 4 h, grounded to produce WMTA 200 mesh in size and then was characterized using Fourier Transformed Infrared (FTIR) spectrophotometer, X-ray Diffraction (XRD) and Scanning Electron Microscopy-Energy Dispersion X-ray (SEM-EDX). The WMTA characteristics were compared to that of the commercial WMTA ProRoot. The result shows that the silica that was potential as the silica source for WMTA preparation was extracted from RHA involving sonication and washing with 360 mL of deionized water per 10 g of RHA. It contained SiO2 of 94.2%, Fe2O3 of 0.03%, no Na2O, and the particle size of 1.51±0.46 µm. The characterization of WMTA shows that produced WMTA contained tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A) and BiO2, which is comparable to the commercial WMTA ProRoot.


2017 ◽  
Vol 32 (S2) ◽  
pp. S61-S65 ◽  
Author(s):  
Chee W. Loy ◽  
Khamirul A. Matori ◽  
Norhazlin Zainuddin ◽  
Andrew E. Whitten ◽  
Christine Rehm ◽  
...  

A series of phase transformations of a novel fluoroaluminosilicate glass forming a range of fluorapatite glass-ceramics on sintering are reported. The sintering process induces formation of fluorapatite, mullite, and anorthite phases within the amorphous silicate matrices of the glass-ceramics. The fluoroaluminosilicate glass, SiO2–Al2O3–P2O5–CaO–CaF2, is prepared from waste materials, such as rice husk ash, pacific oyster shells, and disposable aluminium cans. The thermally induced crystallographic and microstructure evolution of the fluoroaluminosilicate glass towards the fluorapatite glass-ceramics, with applications in dental and bone restoration, are investigated by powder X-ray diffraction and small-angle neutron-scattering techniques.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2013 ◽  
Vol 834-836 ◽  
pp. 309-314
Author(s):  
Zi Fan Xiao ◽  
Jin Shu Cheng ◽  
Jun Xie

A glass-ceramic belonging to the CaO-Al2O3-SiO2(CAS) system with different composition of spodumene and doping the Li2O with amount between 0~2.5 % (mass fraction) were prepared by onestage heat treatment, under sintering and crystallization temperature at 1120 °C for two hours. In this paper, differential thermal analysis, X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and bending strength test were employed to investigate the microstructure and properties of all samples. β-wollastonite crystals were identified as the major crystalline phases, and increasing Li2O was found to be benefit for the crystallization and tiny crystalline phases remelting, resulting in the content of major crystalline phases increased first and then decreased with increasing the expense of spodumene. Meanwhile, the crystal size can be positively related with the content of Li2O. The preferable admixed dosage of spodumene can be obtained, besides the strength of glass-ceramics can be more than 90 MPa.


2006 ◽  
Vol 309-311 ◽  
pp. 325-328 ◽  
Author(s):  
Gültekin Göller ◽  
Ipek Akin ◽  
A. Kahraman ◽  
Erdem Demirkesen ◽  
M. Urgen

In this study; in-vitro bioactivity characterization of machinable glass-ceramics having 85 wt% sodium mica (NaMg3AlSi3O10F2) and 15 wt% fluoroapatite has been carried out. Two different heat treatment procedures are applied to the machinable glass-ceramics. The first one is nucleation at 610°C for 2 hours and crystallization at 1000°C for 3 hours and the second is nucleation at 610°C for 2 hours and crystallization at 1000°C for 4 hours. It is observed that increasing the crystallization time to 4 hours resulted in the increasing the formation of hydroxyapatite layer on surface. According to the microstructural investigations, the morphology of the precipitated crystals are different. In addition, the speed of the precipitation of hydroxyapatite is higher in glass-ceramic B than A. Thin film XRD analysis supports these results.


2010 ◽  
Vol 92 ◽  
pp. 131-137 ◽  
Author(s):  
Qiu Hua Yuan ◽  
Pei Xin Zhang ◽  
Li Gao ◽  
Hai Lin Peng ◽  
Xiang Zhong Ren ◽  
...  

The crystallization behavior of MgO-Al2O3-SiO2 glass-ceramics by sol-gel technology was investigated by using x-ray diffraction (XRD), differential thermal analysis (DTA), Scanning electron microscopy (SEM). The results showed that: (1)α-cordierite phase was precipitated when the green body was calcined at 1050°C, and α-cordierite of high purity and stability could be formed at 1100°C; (2) Adding an appropriate amount of low melting point glass powder into the green body may provide liquid-phase environment during the sintering process, which will help enhance the tightness density of glass-ceramic, and thus improve its flexural strength.


2019 ◽  
Vol 11 (2) ◽  
pp. 45
Author(s):  
Sadang Husain ◽  
Ninis Hadi Haryanti ◽  
Suryajaya Suryajaya ◽  
Antung Permitaria

<p class="abstrak">Calcium silicate ceramics have been made using natural ingredients such as rice husk and snail shell with solid reaction techniques. The aim of this study to determine the characteristics of calcium silicate that have been sintered at a temperature of 900 <sup>°</sup>C, 1000 <sup>°</sup>C, and 1100 <sup>°</sup>C. Samples were characterized by X-Ray Diffraction (XRD), optical microscopy, and Fourier Transform Infra-Red (FTIR). The results of XRD characterization showed that CaSiO<sub>3</sub> (calcium silicate) along with the increase in calcination temperature and quantity was increased due to the increase of temperature of calcination. FTIR analysis showed that the Ca-Si-O bond was formed at wave number ranging from 848 cm<sup>-1</sup> and 999 – 1001 cm<sup>-1</sup>.</p>


2017 ◽  
Vol 28 (23) ◽  
pp. 17611-17621 ◽  
Author(s):  
Chee Sun Lee ◽  
Khamirul Amin Matori ◽  
Sidek Hj. Ab Aziz ◽  
Halimah Mohamed Kamari ◽  
Ismayadi Ismail ◽  
...  

2014 ◽  
Vol 46 (3) ◽  
pp. 377-383
Author(s):  
R. Souag ◽  
N. Kamel ◽  
Y. Mouheb ◽  
M. Hammadi ◽  
Z. Kamel ◽  
...  

New nuclear glass-ceramics are extensively studied for the radioactive waste confinement, due to the double confinement conferred by the glass-ceramics. In this study, a glass-ceramic constituted by an aluminosilicate glass in the system: SiO2-Al2O3-CaO-MgOZrO2-TiO2, containing 2wt.% of Ca0.83Ce0.17ZrTi1.66Al0.34O7 zirconolite, has been synthesized by the discontinuous method. Cerium, an actinide surrogate is introduced both in the glass and ceramic phases. The synthesis is performed by a double melting at 1350?C, followed by a nucleation at 564?C, during 2 h, and a crystal growth at 1010?C during 3 h. Then effect of Ca/Mg ratio on the distribution of the crystalline network in the material was studied for Ca / Mg ratios ranging from 0.4 to 5.5. For the whole of the materials, Archimedes density is about 2.80 g/cm3. X-ray diffraction (XRD) analysis shows that the increase of Ca/Mg ratio leads to the increase of aluminosilicated crystalline phases with high Ca contents; the materials molar volumes remaining constant. The zirconolite phase is not affected by these additive aluminosilicated phases. The scanning electron microscopy analysis (SEM) coupled with energy dispersive X-ray (EDX) analysis confirmed these results; and shows the uniformity of distribution of the ceramics in the bulk of the materials.


2017 ◽  
Vol 866 ◽  
pp. 187-190
Author(s):  
Thossapon Jaihlong ◽  
Nittaya Jaitanong ◽  
Suparut Narksitipan

In present research, the cement-rice husk ash composites were prepared and characterized. The samples were added fiber optic and rice husk ash was used as replacement cementitious materials at 10, 20, 30 and 40 wt% of portland cement. The samples were demolded after 24 h casting and cured in saturated lime water for 3 days. After these periods, the samples were wrapped with plastics films for 7 and 28 days. Then, samples were dried in air for 24 h. The chemical compositin of portland cement and rice husk ash were characterized by using x-ray fluorence spectrometry (XRF). Additionally, dried samples were analysized phase compositions and crystalline structure by using x-ray diffraction (XRD) technique. The chemical element compositions and microstructure were detected by scanning electron microscopy (SEM), respectively. Moreover, The effect of rice husk ash in these cement composites were investigated in this research.


Sign in / Sign up

Export Citation Format

Share Document