scholarly journals Microparticle Size and Quantities Effect on the Mechanical Features of End of Life Tires in Thermoplastic Composites

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5561
Author(s):  
Marc Marín-Genescà ◽  
Jordi García-Amorós ◽  
Ramon Mujal-Rosas ◽  
Lluís Massagués Vidal ◽  
Xavier Colom Fajula

Currently, the huge use of tires generates large quantities of waste material which represents a severe environmental problem. The common technique used for processing waste tires is crushing using mechanical methods and separating tire components like fibers, metals, and rubber from the used tire. The aim of this research is the recycling of this rubber from crushed tires, called ground tire rubber (GTR). With this aim, the manuscript analyses key mechanical properties of the thermoplastic composites produced by blending of crushed and micronized small particles of waste rubber tires with several industrial thermoplastic polymers. These types of composites are defined based on the total amount GTR in percent by weight, in the composite, and also, the particle sizes used in each case, so these aforementioned two variables (microparticle size and amounts) along with seven common industrial polymers define a series of composites for which the mechanical properties were tested, studied, analyzed and finally presented. Finally, the results obtained show that this proposed recycling method could be a way to enhance some specific polymer properties and could contribute to reducing the total of end of life used tire stocks environmental problem.

Author(s):  
Marc Marín Genescà ◽  
Jordi García-Amorós ◽  
Ramon Mujal-Rosas ◽  
Lluís Massagués ◽  
Xavier Colom

Nowadays, the massive use of tires generates large stocks of waste material which is a serious environmental problem. The usual method used for processing wasted tires is mechanical crushing, in which fiber, steel, and rubber are separated. The aim of this research is the recycling of the obtained rubber, called also GTR (Ground Waste Tires). With this purpose, the paper analyses the mechanical properties of the composites produced by mixing GTR with several industrial polymers. These composites are characterized by the percentage of GTR in the composite and its particle size. These two variables along with seven industrial polymers define a set of composites from which the mechanical properties are analyzed and presented. From the results, it can be drawn that this proposal could be a way to enhance some polymer properties and to contribute in some way to reduce the environmental wasted tires problem.


2019 ◽  
Vol 9 (8) ◽  
pp. 1564 ◽  
Author(s):  
Marc Marín-Genescà ◽  
Jordi García-Amorós ◽  
Ramon Mujal-Rosas ◽  
Xavier Salueña Berna ◽  
Lluís Massagués Vidal

The massive manufacture of tires and the difficulty of reducing the stocks of used tires is a serious environmental problem. There are several methods used for recycling wasted tires, one of which is mechanical crushing, in which vulcanized rubber is separated from steel and fibers, resulting in a ground tire rubber (GTR). This can be used in applications such as insulation for footwear work. The aim of the present investigation is to evaluate the use of the GTR when it is mixed with several types of polymer matrix by means of measuring its dielectric and mechanical properties of the resulting composites (polymer + GTR). The analysis is carried out using seven polymeric matrices mixed with different GTR concentrations. With the present study, it is intended to propose a way to reuse the tires out of use as an industrial work footwear insulation, by demonstrating the feasibility of the properties analyzed.


2020 ◽  
Vol 27 (28) ◽  
pp. 4622-4646 ◽  
Author(s):  
Huayu Liu ◽  
Kun Liu ◽  
Xiao Han ◽  
Hongxiang Xie ◽  
Chuanling Si ◽  
...  

Background: Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics, which make them widely used in many fields. This review aims to introduce the preparation of CNFs-based hydrogels and their recent biomedical application advances. Methods: By searching the recent literatures, we have summarized the preparation methods of CNFs, including mechanical methods and chemical mechanical methods, and also introduced the fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels, including scaffold materials and wound dressings. Results: CNFs-based hydrogels are new types of materials that are non-toxic and display a certain mechanical strength. In the tissue scaffold application, they can provide a micro-environment for the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound surface and protect the wound from the external environment, thereby effectively promoting the healing of skin tissue. Conclusion: By summarizing the preparation and application of CNFs-based hydrogels, we have analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels is still in the laboratory stage. It needs further exploration to be applied in practice. The development of medical hydrogels with high mechanical properties and biocompatibility still poses significant challenges.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1058
Author(s):  
Hikaru Okubo ◽  
Haruka Kaneyasu ◽  
Tetsuya Kimura ◽  
Patchiya Phanthong ◽  
Shigeru Yao

Each year, increasing amounts of plastic waste are generated, causing environmental pollution and resource loss. Recycling is a solution, but recycled plastics often have inferior mechanical properties to virgin plastics. However, studies have shown that holding polymers in the melt state before extrusion can restore the mechanical properties; thus, we propose a twin-screw extruder with a molten resin reservoir (MSR), a cavity between the screw zone and twin-screw extruder discharge, which retains molten polymer after mixing in the twin-screw zone, thus influencing the polymer properties. Re-extruded recycled polyethylene (RPE) pellets were produced, and the tensile properties and microstructure of virgin polyethylene (PE), unextruded RPE, and re-extruded RPE moldings prepared with and without the MSR were evaluated. Crucially, the elongation at break of the MSR-extruded RPE molding was seven times higher than that of the original RPE molding, and the Young’s modulus of the MSR-extruded RPE molding was comparable to that of the virgin PE molding. Both the MSR-extruded RPE and virgin PE moldings contained similar striped lamellae. Thus, MSR re-extrusion improved the mechanical performance of recycled polymers by optimizing the microstructure. The use of MSRs will facilitate the reuse of waste plastics as value-added materials having a wide range of industrial applications.


2021 ◽  
Vol 216 ◽  
pp. 108859
Author(s):  
Dong-Jun Kwon ◽  
Neul-Sae-Rom Kim ◽  
Yeong-Jin Jang ◽  
Hyun Ho Choi ◽  
Kihyun Kim ◽  
...  

2018 ◽  
Vol 157 ◽  
pp. 07010
Author(s):  
Beáta Pecušová ◽  
Mariana Pajtášová ◽  
Zuzana Mičicová ◽  
Darina Ondrušová ◽  
Andrea Feriancová ◽  
...  

The given paper deals with the study of the properties of clay minerals, namely montmorillonite and moreover, it is focused on effect of these clay minerals on the curing characteristics of the polymer blends and the physical-mechanical properties of prepared vulcanizates. Montmorillonite is a major clay mineral which has a wide application in many industrial branches. It belongs to the group of dioctahedral smectite minerals with structural type in the ratio of 2:1. Characteristics of prepared modified and organomodified clay minerals are based on sulphur vulcanisation accelerators which are used for the preparation of real polymer blend where they represent a partial replacement of the common carbon black filler and then, the effect on the curing characteristics of polymer blends as well as physical-mechanical properties of the prepared vulcanizates are investigated. The results exhibit that the clay-based filler (modified and organomodified clay minerals) can be used as a partial replacement while the quality of the prepared blends is preserved.


Sign in / Sign up

Export Citation Format

Share Document