scholarly journals Failure Mechanism of Hybrid Steel Beams with Trapezoidal Corrugated-Web Non-Welded Inclined Folds

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1424
Author(s):  
Ahmed S. Elamary ◽  
Yasir Alharthi ◽  
Osama Abdalla ◽  
Muwaffaq Alqurashi ◽  
Ibrahim A. Sharaky

Literature of Steel Beams with a thin-walled trapezoidal Corrugated Web (SBCWs) shows that the capacity of SBCWs is affected by both the fatigue cracks initiated along the inclined folds (IFs) and the maximal additional stress located in the middle of the IFs. An experimental investigation on the behaviour of hybrid SBCWs under flexure is presented in this paper. This study focuses on the effect of the welding IF between the web and flanges (IFs welded or non-welded), the horizontal-fold length (200, 260, and 350 mm), and transversal flange stiffeners on the failure mechanism of the SBCW under three line load. Accordingly, six hybrid specimens were fabricated, instrumented, and tested (five SBCW specimens and one specimen with a flat web). The test setup was designed to generate shear and a moment in the testing zone via three-point bending. The results indicated that non-welded IFs specimens with or without flange stiffeners failed owing to web tearing after web and flange local buckling. The failure mode of the specimen with continuous welding between the web and flanges was local flange buckling. Finally, the paper presents a comparison between the experimental results and the European Code to predict the capacity of the flange towards local buckling. It was concluded that the non-welding the IFs affected the inelastic behaviour and the capacity of the SBCWs. In addition, the bending resistance equations presented by EN 1993-1-5 can safely predict the test results of the non-welded inclined fold and yield a high safe variation.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yasir M. Alharthi ◽  
Ibrahim A. Sharaky ◽  
Ahmed S. Elamary

Hybrid beams provide the opportunity to implement characterized steel sections by recruiting materials based on yield strength and the type of applied stress. Previous studies demonstrated that steel beams with a trapezoidal corrugated web (SBCWs) were affected by both fatigue cracks initiated along the inclined fold (IF) and the maximal additional stress located in the middle of the IFs. This paper presents a numerical study of hybrid SBCWs and nonwelded IFs. Numerical simulation is presented using the finite element (FE) method with the aid of the ANSYS software package. Three-dimensional FE models were developed considering the nonlinear properties of materials and geometric imperfection and validated using five hybrid specimens that were fabricated and tested experimentally by the authors. The load-deflection behavior and failure mechanism of the numerical results were in good agreement with the experimental results. The comparison of the FE models and the experimental results shows the good capability of the FE model to be used as a base for the parametric study. The parametric study focused on the effect of web thickness, flange thickness, web height, and flange and web steel grades. Furthermore, parametric studies are conducted to investigate the effects of the number and depth of the stiffeners on the behavior of hybrid SBCWs. We concluded that the flange thickness, web thickness, web height, and steel grades of flanges significantly affect the capacity and failure mode of hybrid SBCWs. We also concluded that the flange stiffeners have a significant effect on the overall behavior, toughness, and load capacity of SBCWs. Finally, a new equation is proposed to anticipate the shear capacity of SBCW nonwelded IFs based on the length of the welded horizontal fold.


2012 ◽  
Vol 24 (4) ◽  
pp. 479-490 ◽  
Author(s):  
Cheol-Ho Lee ◽  
Kyu-Hong Han ◽  
Dae-Kyung Kim ◽  
Chang-Hee Park ◽  
Jin-Ho Kim ◽  
...  

2015 ◽  
Vol 1111 ◽  
pp. 157-162 ◽  
Author(s):  
Ştefan Benzar ◽  
Viorel Ungureanu ◽  
Dan Dubină ◽  
Mircea Burcă

Corrugated web girders emerged in the past two decades. Their main advantages consists in the possibility to use slender webs avoiding the risk of premature local buckling. Consequently, higher moment capacity might be obtained increasing the beam depth with really thin webs, which are stiffened by the corrugations. Increased interest for this solution was observed for the main frames of single-storey steel buildings and steel bridges. A new solution was proposed at the Politehnica University of Timisoara, in which the beam is composed by a web of trapezoidal steel sheet and flanges of back-to-back lipped channel steel sections. This solution uses self-drilling screws for connecting flanges to the web and to ensure the continuity of the web as seam fasteners. Starting from this new technological solution the paper extends and investigates the use of spot welding as seam fastening to build the web, in order to increase the degree of automation of fabrication. Experimental work of specimens in shear having two or three layers of steel sheets connected by spot welding will be presented. The results will be implemented on a numerical model in order to study the behaviour of the beams presented above.


1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


2011 ◽  
Vol 255-260 ◽  
pp. 596-601 ◽  
Author(s):  
Ke Bin Jiang ◽  
Yong Ding ◽  
Ya Wen Liu ◽  
Feng Zheng

Some secondary effect introduced by corrugated configuration of corrugated web was studied and formulas were proposed. The deduction for these formulas was resolved into two steps. Step I: to solve the behavior of whole corrugated web by considering it as an orthotropic plate; Step II: to solve the secondary effect according to the shape parameters of corrugation based on the result of Step I. Subsequently, a numerical experiment was designed to validate the analytical work with the help of finite element package ANSYS taking material nonlinearity into consideration. The results obtained from numerical and analytical methods show good agreement. It indicates that the formulas proposed in this paper are convenient and efficient. This research deals with this secondary effect for the first time; more studies are needed for the effect on local buckling of corrugated webs.


2014 ◽  
Vol 919-921 ◽  
pp. 951-959 ◽  
Author(s):  
Yan Tao Li ◽  
Cheng Xiang Xu ◽  
Guo Feng Du

The focus of this research program is T-shaped CFT central column to steel frame beam connection. 3 joints with strong columns-weak beams and 1 joint with strong beams-weak columns 1:2 scale specimens were tested under constant axial loads and cyclic horizontal loads. Overall impact of axial force ratio and beam to column linear stiffness ratio on joint failure mechanism, hysteretic behavior, deformation ductility, and energy dissipation capability was investigated. Results showed that the failure mechanism for specimens with strong columns-weak beams was local buckling of the steel beam flanges and formation of the plastic hinges. There was minimum damage on the concrete column and joint panel zone. For a specimen with strong beams-weak columns, there was local buckling fracture on steel tube above and below the joint panel zone. Crushing of the core concrete was also observed with formation of the column hinges. It was found that both axial forces and beam to column linear stiffness ratio had impacts on joint capacity and ductility behavior of the specimens. Experiment results showed that the joint models had deformation ductility factor between 3.39 and 3.91 and viscous damping ratio between 0.46 and 0.51.


2016 ◽  
Vol 7 (1) ◽  
pp. 69-78
Author(s):  
Mariusz Marcin Maslak ◽  
Marcin Lukacz

Purpose The purpose of this paper is to present and discuss in detail the design approach to shear buckling resistance evaluation for corrugated web being a part of a steel beam exposed to fire. Design/methodology/approach It is based on the interaction between the local and global elastic instability failure modes as well as on the possible yielding of the whole web cross-section during fire. Findings New formulae, adequate for specification of the suitable shear buckling coefficients, depend not only on the web slenderness but also on the temperature of structural steel. Originality/value The methodology proposed by the authors can be added to the current European standard recommendations given in EN 1993-1-2 as a well-justified design algorithm helpful in reliable evaluation of a safety level for steel beams with slender corrugated webs subject to fire exposure. It seems to be highly desirable because, at present, there are no detailed instructions in this field.


2018 ◽  
Vol 195 ◽  
pp. 02008
Author(s):  
Yanuar Setiawan ◽  
Ay Lie Han ◽  
Buntara Sthenly Gan ◽  
Junaedi Utomo

The use of castellated beams has become more popular in the last two decades. The main idea for the use of these types of steel beams is to reduce their self-weight by providing openings in the web of wide flange (WF) or I sections. Numerous research on castellated beams has been conducted, the majority of the studies aimed to optimize the opening size and the shape configuration of the openings. A numerical analysis of castellated beams with oval openings was performed in this study. The sections under investigation had variations in the height-to-length ratios of the beam. The Do to D and b to Do ratios were kept at a constant. The D value was defined as the height of the beam, while Do is the height of the opening, and b is the width of the opening. The numerical analysis was performed by the finite element analysis using the STRAND7 software. The numerical model was further validated to the experimental data. The results showed that the developed finite element model resulted in a very good representation to the actual behavior of the sections.


Author(s):  
Witold Basiński

This study reports investigations into the effect of relative flexural stiffness of intermediate stiffeners γ on the failure zone location in the corrugated web. The study also aimed at obtaining stiffness criterion for intermediate stiffeners that depends on the magnitude of the plate geometry parameter α. To achieve the goals of the study, experimental investigations were conducted into load displacement paths of four exemplary SIN girders. They were simply supported girders, made to full scale, and composed of pre-assembled units. The phenomena occurring in the experiment were represented using the Finite Element Method. For FEM numerical analysis of girders with intermediate stiffeners, models with the web height of 1000, 1250 and 1500 mm, made from 2; 2.5 and 3 mm thick corrugated sheet metal were used. Due to the analysis of 52 girder numerical models, it was possible to propose the stiffness criterion of intermediate stiffeners. The criterion was based on the assessment of shear buckling strength of the corrugated web. Using the regression method, dimensionless coefficients of the stiffener stiffness ks dependent on the optimum stiffness γ were determined. Based on estimated coefficients of the stiffener stiffness ks, the absolute minimum stiffness of intermediate stiffeners Ismin used in corrugated web plate girders was calculated. It was demonstrated that the use of an intermediate stiffener, the stiffness of which is greater than Ismin , additionally leads to a change in the location of the site of the web shear buckling.


Sign in / Sign up

Export Citation Format

Share Document