scholarly journals Analysis of the Temperature Distribution on the Surface of Saddle-Shaped Briquettes Consolidated in the Roller Press

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1770
Author(s):  
Michał Bembenek ◽  
Andrzej Uhryński

The unit pressure in the fine-grained material consolidation process in the roller press can reach over hundred MPa and is a parameter which results, among other things, from the properties of the consolidated material and the compaction unit geometry. Its value changes depending on the place on the molding surface. Generating different pressure on the surface of briquettes makes their compaction different. One’s own and other researchers’ experience shows that, in the case of exerting high pressure on the merged fine-grained material, the higher unit pressure exerted on the material, the higher temperature of the consolidated material is. The temperature distribution on the surface of the briquettes can testify the locally exerted pressure on the briquette. The stress distribution in the briquetting material is still a subject of research. The article includes thermography studies of the briquetting process of four material mixtures. Thermal images of briquettes were taken immediately after they left the compaction zone as well as forming rollers. The obtained thermograms and temperature variability at characteristic points of the surface of briquettes were analyzed. The correlation between the temperature distribution and the stress distribution in the briquettes was determined.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


Author(s):  
Yumeng Liang ◽  
Anfu Zhou ◽  
Huanhuan Zhang ◽  
Xinzhe Wen ◽  
Huadong Ma

Contact-less liquid identification via wireless sensing has diverse potential applications in our daily life, such as identifying alcohol content in liquids, distinguishing spoiled and fresh milk, and even detecting water contamination. Recent works have verified the feasibility of utilizing mmWave radar to perform coarse-grained material identification, e.g., discriminating liquid and carpet. However, they do not fully exploit the sensing limits of mmWave in terms of fine-grained material classification. In this paper, we propose FG-LiquID, an accurate and robust system for fine-grained liquid identification. To achieve the desired fine granularity, FG-LiquID first focuses on the small but informative region of the mmWave spectrum, so as to extract the most discriminative features of liquids. Then we design a novel neural network, which uncovers and leverages the hidden signal patterns across multiple antennas on mmWave sensors. In this way, FG-LiquID learns to calibrate signals and finally eliminate the adverse effect of location interference caused by minor displacement/rotation of the liquid container, which ensures robust identification towards daily usage scenarios. Extensive experimental results using a custom-build prototype demonstrate that FG-LiquID can accurately distinguish 30 different liquids with an average accuracy of 97%, under 5 different scenarios. More importantly, it can discriminate quite similar liquids, such as liquors with the difference of only 1% alcohol concentration by volume.


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772094520
Author(s):  
Yanwei Niu ◽  
Yong’e Wang ◽  
Yingying Tang

Through decades of operation, deformation fluctuation becomes a central problem affecting the normal operating of concrete truss combination arch bridge. In order to clarify the mechanism of temperature-induced deformation and its impact on structural stress distribution, this article reports on the temperature distribution and its effect on the deformation of concrete truss combination arch bridge based on bridge health monitoring on a proto bridge with 138 m main span. The temperature distribution and deformation characteristics of the bridge structure in deep valley area are studied. Both of the daily and yearly temperature variation and structural deformation are studied based on bridge health monitoring. Using the outcome of monitoring data, three-dimensional solid finite element models are established to analyze the mechanism of temperature-induced deformation of the whole bridge under different temperature fields. The influence of temperature-induced effect is discussed on local damage based on the damage observation of the background bridge. The outcome of comparisons with field observation validates the analysis results. The relevant monitoring and simulation result can be referenced for the design and evaluation of similar bridges.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2489
Author(s):  
Michał Bembenek

When considering the operation of roller presses for the consolidation of fine-grained materials, the main problems are disturbances in the proper flow of the material and its bridging in gravity feeders. This is especially true for small and medium capacity presses, where the hoppers for dosing the material are narrow. This article presents innovative laboratory tests of the impact of using a polymer plate lining in the gravity feeder of a roller press. Polymer materials Polyacetal C (POM C) and Ultra-High-Molecular-Weight Polyethylene (UHMW-PE) were used for the tests. The influence of the use of plates on the material flow and quality of briquettes was investigated in comparison with the case where such plates were not used. The research showed an improvement in the flow of fine-grained materials in the feeder and an increase of the briquette strength indexes, as compared to those cases when polymer linings were not used in the feeder.


2020 ◽  
Vol 15 (12) ◽  
pp. 3571-3591
Author(s):  
Bartłomiej Szczepan Olek

AbstractConsolidation rate has significant influence on the settlement of structures founded on soft fine-grained soil. This paper presents the results of a series of small-scale and large-scale Rowe cell consolidation tests with pore water pressure measurements to investigate the factors affecting the consolidation process. Permeability and creep/resistance structure factors were considered as the governing factors. Intact and reconstituted marine clay from the Polish Carpathian Foredeep basin as well as clay–sand mixtures was examined in the present study. The fundamental relationship correlating consolidation degrees based on compression and pore water pressure was assessed to indicate the nonlinear soil behaviour. It was observed that the instantaneous consolidation parameters vary as the process progresses. The instantaneous coefficient of consolidation first drastically increases or decreases with increase in the degree of consolidation and stabilises in the middle stage of the consolidation; it then decreases significantly due to viscoplastic effects occurring in the soil structure. Based on the characteristics of the relationship between coefficient of consolidation and degree of dissipation at the base, the consolidation range that complies with theoretical assumptions was established. Furthermore, the influence of coarser fraction in clay–sand mixtures in controlling the consolidation rates is discussed.


2014 ◽  
Vol 388 ◽  
pp. 367-373 ◽  
Author(s):  
Julien Stodolna ◽  
Zack Gainsforth ◽  
Anna L. Butterworth ◽  
Andrew J. Westphal

Sign in / Sign up

Export Citation Format

Share Document