scholarly journals Hydrothermal Crystallization of Bismuth Oxychlorides (BiOCl) Using Different Shape Control Reagents

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2261
Author(s):  
Enikő Bárdos ◽  
Viktória A. Márta ◽  
Szilvia Fodor ◽  
Endre-Zsolt Kedves ◽  
Klara Hernadi ◽  
...  

Bismuth oxychloride photocatalysts were obtained using solvothermal synthesis and different additives (CTAB—cetyltrimethylammonium bromide, CTAC—cetyltrimethylammonium chloride, PVP–polyvinylpyrrolidone, SDS–sodium dodecylsulphate, U—urea and TU—thiourea). The effect of the previously mentioned compounds was analyzed applying structural (primary crystallite size, crystal phase composition, etc.), morphological (particle geometry), optical (band gap energy) parameters, surface related properties (surface atoms’ oxidation states), and the resulted photocatalytic activity. A strong dependency was found between the surface tension of the synthesis solutions and the overall morpho-structural parameters. The main finding was that the characteristics of the semiconductors can be tuned by modifying the surface tension of the synthesis mixture. It was observed after the photocatalytic degradation, that the white semiconductor turned to grey. Furthermore, we attempted to explain the gray color of BiOCl catalysts after the photocatalytic decompositions by Raman and XPS studies.

2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1118
Author(s):  
Ibrahim Mustapha Alibe ◽  
Khamirul Amin Matori ◽  
Mohd Hafiz Mohd Zaid ◽  
Salisu Nasir ◽  
Ali Mustapha Alibe ◽  
...  

The contemporary market needs for enhanced solid–state lighting devices has led to an increased demand for the production of willemite based phosphors using low-cost techniques. In this study, Ce3+ doped willemite nanoparticles were fabricated using polymer thermal treatment method. The special effects of the calcination temperatures and the dopant concentration on the structural and optical properties of the material were thoroughly studied. The XRD analysis of the samples treated at 900 °C revealed the development and or materialization of the willemite phase. The increase in the dopant concentration causes an expansion of the lattice owing to the replacement of larger Ce3+ ions for smaller Zn2+ ions. Based on the FESEM and TEM micrographs, the nanoparticles size increases with the increase in the cerium ions. The mean particles sizes were estimated to be 23.61 nm at 1 mol% to 34.02 nm at 5 mol% of the cerium dopant. The optical band gap energy of the doped samples formed at 900 °C decreased precisely by 0.21 eV (i.e., 5.21 to 5.00 eV). The PL analysis of the doped samples exhibits a strong emission at 400 nm which is ascribed to the transition of an electron from localized Ce2f state to the valence band of O2p. The energy level of the Ce3+ ions affects the willemite crystal lattice, thus causing a decrease in the intensity of the green emission at 530 nm and the blue emission at 485 nm. The wide optical band gap energy of the willemite produced is expected to pave the way for exciting innovations in solid–state lighting applications.


2021 ◽  
Vol 317 ◽  
pp. 95-99
Author(s):  
Muhammad Noorazlan Abd Azis ◽  
Halimah Mohamed Kamari ◽  
Suriani Abu Bakar ◽  
Azlina Yahya ◽  
Umar Saad Aliyu

Borotellurite glass had been widely applied in the field of optical communications and devices. In this work, holmium oxides doped borotellurite glass had been successfully fabricated via conventional melt-quenched technique. The structural properties of holmium doped tellurite glass were found using x-ray diffraction (XRD) method. The nonexistence of sharp peaks in XRD pattern shows that the inclusion of holmium tellurite glass leads to the formation long range of disorderness. The optical properties of the glass system such as refractive index and optical band gap energy are investigated using UV-Vis spectrophotometer. The value of refractive index is found in nonlinear trend along with holmium oxides concentration. It is found that the refractive index is more than 2 at 0.01, 0.03 and 0.04 of holmium concentrations. The optical band gap energy was found in similar trend with refractive index which is in nonlinear pattern.


2013 ◽  
Vol 37 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Chitra Das ◽  
Jahanara Begum ◽  
Tahmina Begum ◽  
Shamima Choudhury

Effect of thickness on the optical and electrical properties of gallium arsenide (GaAs) thin films were studied. The films of different thicknesses were prepared by vacuum evaporation method (~10-4 Pa) on glass substrates at a substrate temperature of 323 K. The film thickness was measured in situ by a frequency shift of quartz crystal. The thicknesses were 250, 300 and 500 nm. Absorption spectrum of this thin film had been recorded using UV-VIS-NIR spectrophotometer in the photon wavelength range of 300 - 2500 nm. The values of some important optical parameters of the studied films (absorption coefficient, optical band gap energy and refractive index; extinction co-efficient and real and imaginary parts of dielectric constant) were determined using these spectra. Transmittance peak was observed in the visible region of the solar spectrum. Here transmittance showed better result when thicknesses were being increased. The optical band gap energy was decreased by the increase of thickness. The refractive index increased by increasing thickness while extinction co-efficient and real and imaginary part of dielectric constant decreased. DOI: http://dx.doi.org/10.3329/jbas.v37i1.15684 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 1, 83-91, 2013


2015 ◽  
Vol 9 (3) ◽  
pp. 169-173 ◽  
Author(s):  
Yahia Elbashar

Homogeneous glass samples with different compositions 42(P2O5)?40 (ZnO)?(16?x)(K2O)?2 (Bi2O3)?x(Cu2O) (where x = 1, 2 and 3mol%) were prepared by conventional melt-quenched technique under controlled conditions. The structure of the prepared glass samples was investigated by X-ray diffraction. Optical properties (transmittance and reflectance) of the glasses were measured in the wavelength range 200-900 nm. The optical band gap energy of the investigated glasses with 1, 2 and 3mol% Cu2O was estimated from absorption data using the Mott and Davis relation and found to be 2.33, 2.45 and 2.53 eV, respectively. The mechanism of optical absorption was found to be direct. The band tail width was also estimated and found to lay in the acceptable range. Refractive index, absorption coefficient, extinction coefficient and real/imaginary parts of dielectric constants were calculated. Further to this, some theoretical investigation of the spectral problems was carried out. The investigation was based on finite difference method.


2020 ◽  
Author(s):  
Juliya Acha Parambil ◽  
Abdul Mujeeb V.M ◽  
S. Zh. Karazhanov ◽  
Jayaram Peediyekkal

Abstract The photocatalytic degradation of methylene blue in aqueous solutions is enhanced significantly by formulating multiphase TiO2/ZnO/Fe2O3 nanocomposites. The photocatalytic activity of unary TiO2, binary TiO2/ZnO, and ternary TiO2/ZnO/Fe2O3 compounds are compared and reported. Using TiO2/ZnO/Fe2O3, methylene blue degradation became rapid and the reaction followed first-order kinetics. The consequences of the phase transition, surface features, and optical properties are compared and elucidated. The reduced photoluminescence intensity and decreased optical band gap energy in tertiary compounds impose higher degradation of methylene blue under irradiation.


2019 ◽  
Vol 13 ◽  
pp. 102106 ◽  
Author(s):  
Jarnail Singh ◽  
Vikram Verma ◽  
Rajesh Kumar ◽  
Ravi Kumar

Sign in / Sign up

Export Citation Format

Share Document