scholarly journals A Stochastic FE2 Data-Driven Method for Nonlinear Multiscale Modeling

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2875
Author(s):  
Xiaoxin Lu ◽  
Julien Yvonnet ◽  
Leonidas Papadopoulos ◽  
Ioannis Kalogeris ◽  
Vissarion Papadopoulos

A stochastic data-driven multilevel finite-element (FE2) method is introduced for random nonlinear multiscale calculations. A hybrid neural-network–interpolation (NN–I) scheme is proposed to construct a surrogate model of the macroscopic nonlinear constitutive law from representative-volume-element calculations, whose results are used as input data. Then, a FE2 method replacing the nonlinear multiscale calculations by the NN–I is developed. The NN–I scheme improved the accuracy of the neural-network surrogate model when insufficient data were available. Due to the achieved reduction in computational time, which was several orders of magnitude less than that to direct FE2, the use of such a machine-learning method is demonstrated for performing Monte Carlo simulations in nonlinear heterogeneous structures and propagating uncertainties in this context, and the identification of probabilistic models at the macroscale on some quantities of interest. Applications to nonlinear electric conduction in graphene–polymer composites are presented.

2021 ◽  
Vol 11 (9) ◽  
pp. 4243
Author(s):  
Chieh-Yuan Tsai ◽  
Yi-Fan Chiu ◽  
Yu-Jen Chen

Nowadays, recommendation systems have been successfully adopted in variant online services such as e-commerce, news, and social media. The recommenders provide users a convenient and efficient way to find their exciting items and increase service providers’ revenue. However, it is found that many recommenders suffered from the cold start (CS) problem where only a small number of ratings are available for some new items. To conquer the difficulties, this research proposes a two-stage neural network-based CS item recommendation system. The proposed system includes two major components, which are the denoising autoencoder (DAE)-based CS item rating (DACR) generator and the neural network-based collaborative filtering (NNCF) predictor. In the DACR generator, a textual description of an item is used as auxiliary content information to represent the item. Then, the DAE is applied to extract the content features from high-dimensional textual vectors. With the compact content features, a CS item’s rating can be efficiently derived based on the ratings of similar non-CS items. Second, the NNCF predictor is developed to predict the ratings in the sparse user–item matrix. In the predictor, both spare binary user and item vectors are projected to dense latent vectors in the embedding layer. Next, latent vectors are fed into multilayer perceptron (MLP) layers for user–item matrix learning. Finally, appropriate item suggestions can be accurately obtained. The extensive experiments show that the DAE can significantly reduce the computational time for item similarity evaluations while keeping the original features’ characteristics. Besides, the experiments show that the proposed NNCF predictor outperforms several popular recommendation algorithms. We also demonstrate that the proposed CS item recommender can achieve up to 8% MAE improvement compared to adding no CS item rating.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


Author(s):  
Qi Zhang ◽  
Yilin Chen ◽  
Ziyi Yang

Deep learning has achieved remarkable success in diverse computer science applications, however, its use in other traditional engineering fields has emerged only recently. In this project, we solved several mechanics problems governed by differential equations, using physics informed neural networks (PINN). The PINN embeds the differential equations into the loss of the neural network using automatic differentiation. We present our developments in the context of solving two main classes of problems: data-driven solutions and data-driven discoveries, and we compare the results with either analytical solutions or numerical solutions using the finite element method. The remarkable achievements of the PINN model shown in this report suggest the bright prospect of the physics-informed surrogate models that are fully differentiable with respect to all input coordinates and free parameters. More broadly, this study shows that PINN provides an attractive alternative to solve traditional engineering problems.


Author(s):  
Yaqi Zhang ◽  
Vadim Shapiro ◽  
Paul Witherell

Abstract One of the most prevalent additive manufacturing processes, the powder bed fusion process, is driven by a moving heat source that melts metals to build a part. This moving heat source, and the subsequent formation and moving of a melt pool, plays an important role in determining both the geometric and mechanical properties of the printed components. The ability to control the melt pool during the build process is a sought after mechanism for improving quality control and optimizing manufacturing parameters. For this reason, efficient models that can predict melt pool size based on the process input (i.e., laser power, scan speed, spot size and scan path) offer a path to improved process control. Towards improved process control, a data-driven melt pool prediction model is built with a neighborhood-based neural network and trained using experimental data from the National Institute of Standards and Technology (NIST). The model considers the influence of both manufacturing parameters and laser scan paths. The scan path information is encoded using two novel neighborhood features of the neural network through locality. The neural network is used to generate a surrogate model, and we demonstrate how the performance of the resulting surrogate model can be further improved by using several ensemble methods. We then demonstrate how the trained surrogate model can be used as a forward solver for developing novel laser power design algorithms. The resulting laser power plan is designed to keep melt pool size as constant as possible for any given scan pattern. The algorithm is implemented and validated with numerical experiments.


2010 ◽  
Vol 22 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Tamer Mansour ◽  
◽  
Atsushi Konno ◽  
Masaru Uchiyama

This paper studies the use of neural networks as a tuning tool for the gain in Modified Proportional-Integral-Derivative (MPID) control used to control a flexible manipulator. The vibration control gain in the MPID controller has been determined in an empirical way so far. It is a considerable time consuming process because the vibration control performance depends not only on the vibration control gain but also on the other parameters such as the payload, references and PD joint servo gains. Hence, the vibration control gain must be tuned considering the other parameters. In order to find optimal vibration control gain for the MPID controller, a neural network based approach is proposed in this paper. The proposed neural network finds an optimum vibration control gain that minimizes a criteria function. The criteria function is selected to represent the effect of the vibration of the end effector in addition to the speed of response. The scaled conjugate gradient algorithm is used as a learning algorithm for the neural network. Tuned gain response results are compared to results for other types of gains. The effectiveness of using the neural network appears in the reduction of the computational time and the ability to tune the gain with different loading condition.


2020 ◽  
Author(s):  
Reza Torabi ◽  
Serena Jenkins ◽  
Allonna Harker ◽  
Ian Q. Whishaw ◽  
Robbin Gibb ◽  
...  

We present a deep neural network for data-driven analyses of infant rat behavior in an open field task. The network was applied to study the effect of maternal nicotine exposure prior to conception on offspring motor development. The neural network outperformed human expert designed animal locomotion measures in distinguishing rat pups born to nicotine exposed dams versus control dams. Notably, the network discovered novel movement alterations in posture, movement initiation and a stereotypy in warm-up behavior (the initiation of movement along specific dimensions) that were predictive of nicotine exposure. The results suggest that maternal preconception nicotine exposure delays and alters offspring motor development. In summary, we demonstrated that a deep neural network can automatically assess animal behavior with high accuracy, and that it offers a data-driven approach to investigating pharmacological effects on brain development.


2020 ◽  
Author(s):  
Amol Thakkar ◽  
Nidhal Selmi ◽  
Jean-Louis Reymond ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p></p><p>Ring systems in pharmaceuticals, agrochemicals and dyes are ubiquitous chemical motifs. Whilst the synthesis of common ring systems is well described, and novel ring systems can be readily computationally enumerated, the synthetic accessibility of unprecedented ring systems remains a challenge. ‘Ring Breaker’ uses a data-driven approach to enable the prediction of ring-forming reactions, for which we have demonstrated its utility on frequently found and unprecedented ring systems, in agreement with literature syntheses. We demonstrate the performance of the neural network on a range of ring fragments from the ZINC and DrugBank databases and highlight its potential for incorporation into computer aided synthesis planning tools. These approaches to ring formation and retrosynthetic disconnection offer opportunities for chemists to explore and select more efficient syntheses/synthetic routes. </p><br><p></p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kavitha Senthil ◽  
Vidyaathulasiramam

Abstract Objectives This paper proposed the neural network-based segmentation model using Pre-trained Mask Convolutional Neural Network (CNN) with VGG-19 architecture. Since ovarian is very tiny tissue, it needs to be segmented with higher accuracy from the annotated image of ovary images collected in dataset. This model is proposed to predict and suppress the illness early and to correctly diagnose it, helping the doctor save the patient's life. Methods The paper uses the neural network based segmentation using Pre-trained Mask CNN integrated with VGG-19 NN architecture for CNN to enhance the ovarian cancer prediction and diagnosis. Results Proposed segmentation using hybrid neural network of CNN will provide higher accuracy when compared with logistic regression, Gaussian naïve Bayes, and random Forest and Support Vector Machine (SVM) classifiers.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Yu Ding ◽  
Qiang Liu

A data-driven fault diagnosis method that combines Kriging model and neural network is presented and is further used for power transformers based on analysis of dissolved gases in oil. In order to improve modeling accuracy of Kriging model, a modified model that replaces the global model of Kriging model with BP neural network is presented and is further extended using linearity weighted aggregation method. The presented method integrates characteristics of the global approximation of the neural network technology and the localized departure of the Kriging model, which improves modeling accuracy. Finally, the validity of this method is demonstrated by several numerical computations of transformer fault diagnosis problems.


Sign in / Sign up

Export Citation Format

Share Document