scholarly journals What Is Driving the Growth of Inorganic Glass in Smart Materials and Opto-Electronic Devices?

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2926
Author(s):  
Daniel Alves Barcelos ◽  
Diana C. Leitao ◽  
Laura C. J. Pereira ◽  
M. Clara Gonçalves

Inorganic glass is a transparent functional material and one of the few materials that keeps leading innovation. In the last decades, inorganic glass was integrated into opto-electronic devices such as optical fibers, semiconductors, solar cells, transparent photovoltaic devices, or photonic crystals and in smart materials applications such as environmental, pharmaceutical, and medical sensors, reinforcing its influence as an essential material and providing potential growth opportunities for the market. Moreover, inorganic glass is the only material that is 100% recyclable and can incorporate other industrial offscourings and/or residues to be used as raw materials. Over time, inorganic glass experienced an extensive range of fabrication techniques, from traditional melting-quenching (with an immense diversity of protocols) to chemical vapor deposition (CVD), physical vapor deposition (PVD), and wet chemistry routes as sol-gel and solvothermal processes. Additive manufacturing (AM) was recently added to the list. Bulks (3D), thin/thick films (2D), flexible glass (2D), powders (2D), fibers (1D), and nanoparticles (NPs) (0D) are examples of possible inorganic glass architectures able to integrate smart materials and opto-electronic devices, leading to added-value products in a wide range of markets. In this review, selected examples of inorganic glasses in areas such as: (i) magnetic glass materials, (ii) solar cells and transparent photovoltaic devices, (iii) photonic crystal, and (iv) smart materials are presented and discussed.

2019 ◽  
Vol 293 ◽  
pp. 83-95
Author(s):  
Marek Szindler

The use of thin films in optoelectronic and photovoltaic devices is aimed at improving the physical properties of the substrate material. The modification of the surface of the silicon substrate is thus one of the greatest challenges in research on photovoltaic materials, in order to achieve even greater efficiency or better adapt their properties depending on the application. The technologies of applying layers vary depending on the effect to be obtained and the material from which the layer is formed. In practice, the most common method is chemical vapor deposition and physical vapor deposition, and the most commonly applied optical materials are SiO2, TiO2 and Si3N4.This paper presents the results of investigations on morphology and optical properties of the prepared aluminium oxide thin films. Thin films were prepared with use of sol-gel spin coating method. Surface morphology studies were carried out using an atomic force microscope. To characterize the surface of the thin films, 3D images and histograms of the frequency of individual inequalities were made. In order to characterize the optical properties of Al2O3 thin films, the reflectance and light transmission tests were performed using a spectrophotometer. Optical constants were determined using a spectroscopic ellipsometer. Results and their analysis show that the sol-gel method allows the deposition of homogenous thin films of Al2O3 with the desired geometric characteristics and good optical properties. Uniform, continuous thin layers with a roughness not exceeding a few nanometres were deposited. Their deposition enabled to reduce the reflection of light from the polished substrate below 15% in a wide range (425-800nm) while maintaining high transparencies (over 90%). The obtained results causes that mentioned thin films are good potential material for optics, optoelectronics and photovoltaics.


2006 ◽  
Vol 933 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

ABSTRACTA simple combinatorial approach for studying chemical and physical vapor deposition (CVD and PVD) nanoparticle growth is presented utilizing temperature and precursor flux gradients across sample surfaces. Large temperature gradients (450-700 °C) are induced covering the entire range of interest for most CVD and PVD processes. Precursor flux gradients may also be introduced simultaneously or separately using a tungsten cracking filament mounted on a translation arm. Theory and calibration experiments are explained and results from a study on Ge nanoparticle growth on HfO2 surfaces are presented and analyzed. This method drastically decreases experimental time required to investigate nanoparticle growth and identify optimum deposition conditions. Furthermore, this approach greatly facilitates preparation of library samples containing a wide range (several orders of magnitude) in variation of nanoparticle sizes, density, and composition for subsequent studies.


2014 ◽  
Vol 597 ◽  
pp. 153-156
Author(s):  
Ching Yen Ho ◽  
Wen Chieh Wu

This paper investigates ionic distribution generated by electron beam (EB) during Physical Vapor Deposition (PVD). EB-PVD has a wide range of applications in thermal barrier coatings (TBCs) due to favorable characteristics compared with other coating processes. EB-PVD is an important material coating method that utilizes electron beams as heat sources to evaporate materials, which are then deposited on a substrate. Therefore EB-induced ionic distribution dominates the quality and thickness of the final coating on the substrate. Assuming the EB-generated plasma to be only a function of radial direction, the steady-state equations of continuity and motion combined with Posson’s equation were utilized to analyze the plasma distributions along the radial direction. The available experimental data are also used to validate the model. The results show that the coating efficiency can be improved by decreasing the ratio of the electron thermal energy to the initial ion energy and increasing the ratio of the initial ion density to the initial electron density. The uniformity of coating can be achieved by reducing the initial ion density.


2015 ◽  
Vol 169 ◽  
pp. 195-201 ◽  
Author(s):  
Pedro Salazar ◽  
Victor Rico ◽  
Rafael Rodríguez-Amaro ◽  
Juan P. Espinós ◽  
Agustín R. González-Elipe

2021 ◽  
Author(s):  
H. Bitam ◽  
B. Zaidi ◽  
B. Hadjoudja ◽  
C. Shekhar ◽  
S. Gagui ◽  
...  

Abstract Due to the high need for energy generation for today’s electronic devices as well as with the natural disasters occurring at the increased frequency, intensity and duration, it becomes essential to explore this scientific area for the sustainability of the society. The benefit of a composite a-Si/CZTS photovoltaic devices for energy generation has not yet been investigated. Addressing the problem and providing a radical solution has been attempted in this research. This research reports the calculated parameters for the solar cell based on the new arrey of the layers, employing a-Si/CZTS. Adapted a-Si/CZTS configuration-based solar cell, debutant analysis of the parameters, and address the challenges that impeded the efficiency of the photovoltaic device are the chief novelty of this research work.


Sign in / Sign up

Export Citation Format

Share Document