scholarly journals Prediction of Surface Roughness of an Abrasive Water Jet Cut Using an Artificial Neural Network

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3108
Author(s):  
Mirko Ficko ◽  
Derzija Begic-Hajdarevic ◽  
Maida Cohodar Husic ◽  
Lucijano Berus ◽  
Ahmet Cekic ◽  
...  

The study’s primary purpose was to explore the abrasive water jet (AWJ) cut machinability of stainless steel X5CrNi18-10 (1.4301). The study analyzed the effects of such process parameters as the traverse speed (TS), the depth of cut (DC), and the abrasive mass flow rate (AR) on the surface roughness (Ra) concerning the thickness of the workpiece. Three different thicknesses were cut under different conditions; the Ra was measured at the top, in the middle, and the bottom of the cut. Experimental results were used in the developed feed-forward artificial neural network (ANN) to predict the Ra. The ANN’s model was validated using k-fold cross-validation. A lowest test root mean squared error (RMSE) of 0.2084 was achieved. The results of the predicted Ra by the ANN model and the results of the experimental data were compared. Additionally, as TS and DC were recognized, analysis of variance at a 95% confidence level was used to determine the most significant factors. Consequently, the ANN input parameters were modified, resulting in improved prediction; results show that the proposed model could be a useful tool for optimizing AWJ cut process parameters for predicting Ra. Its main advantage is the reduced time needed for experimentation.

2011 ◽  
Vol 188 ◽  
pp. 535-541
Author(s):  
Xiao Jiang Cai ◽  
Z.Q. Liu ◽  
Q.C. Wang ◽  
Shu Han ◽  
Qing Long An ◽  
...  

Surface roughness is a significant aspect of the surface integrity concept. It is efficient to predict the surface roughness in advance by a prediction model. In this study, artificial neural network is used to model the surface roughness in turning of free machining steel 1215. The inputs considered in the prediction ANN model were cutting speed, feed rate and depth of cut, and the output was Ra. Several feed-forward neural networks with different architectures were compared in terms of prediction accuracy, and then the best prediction model, a 3-4-1-1 ANN was capable of predicting Ra with a mean squared error 5.46%, was presented.


2019 ◽  
Vol 895 ◽  
pp. 52-57 ◽  
Author(s):  
Prasanna Vineeth Bharadwaj ◽  
T.P. Jeevan ◽  
P.S. Suvin ◽  
S.R. Jayaram

Tribotesting is necessary to understand the behaviour of the material under various operating lubrication conditions. This paper deals with the training of an artificial neural network (ANN) model with Bio-lubricant properties and machining conditions for prediction of surface roughness and coefficient of friction in Tribotesting by Tool chip Tribometer. Experimental results obtained from Tool chip tribometer for tested bio-lubricants are compared with those obtained by ANN prediction. A good agreement in results recommends that a well trained neural network is competent enough to predict the parameters in Tribotesting process.


Author(s):  
Jiaqi Lyu ◽  
Souran Manoochehri

Abstract With the development of Fused Deposition Modeling (FDM) technology, the quality of fabricated parts is getting more attention. The present study highlights the predictive model for dimensional accuracy in the FDM process. Three process parameters, namely extruder temperature, layer thickness, and infill density, are considered in the model. To achieve better prediction accuracy, three models are studied, namely multivariate linear regression, Artificial Neural Network (ANN), and Support Vector Regression (SVR). The models are used to characterize the complex relationship between the input variables and dimensions of fabricated parts. Based on the experimental data set, it is found that the ANN model performs better than the multivariate linear regression and SVR models. The ANN model is able to study more quality characteristics of fabricated parts with more process parameters of FDM.


2014 ◽  
Vol 7 (4) ◽  
pp. 132-143
Author(s):  
ABBAS M. ABD ◽  
SAAD SH. SAMMEN

The prediction of different hydrological phenomenon (or system) plays an increasing role in the management of water resources. As engineers; it is required to predict the component of natural reservoirs’ inflow for numerous purposes. Resulting prediction techniques vary with the potential purpose, characteristics, and documented data. The best prediction method is of interest of experts to overcome the uncertainty, because the most hydrological parameters are subjected to the uncertainty. Artificial Neural Network (ANN) approach has adopted in this paper to predict Hemren reservoir inflow. Available data including monthly discharge supplied from DerbendiKhan reservoir and rain fall intensity falling on the intermediate catchment area between Hemren-DerbendiKhan dams were used.A Back Propagation (LMBP) algorithm (Levenberg-Marquardt) has been utilized to construct the ANN models. For the developed ANN model, different networks with different numbers of neurons and layers were evaluated. A total of 24 years of historical data for interval from 1980 to 2004 were used to train and test the networks. The optimum ANN network with 3 inputs, 40 neurons in both two hidden layers and one output was selected. Mean Squared Error (MSE) and the Correlation Coefficient (CC) were employed to evaluate the accuracy of the proposed model. The network was trained and converged at MSE = 0.027 by using training data subjected to early stopping approach. The network could forecast the testing data set with the accuracy of MSE = 0.031. Training and testing process showed the correlation coefficient of 0.97 and 0.77 respectively and this is refer to a high precision of that prediction technique.


2013 ◽  
Vol 690-693 ◽  
pp. 3175-3179
Author(s):  
Ji Gao ◽  
Di Wang ◽  
Yao Sun

The process parameters of electrical discharge grinding,such as workpiece polarity, pulse width, pulse interval, peak current, peak voltage, all have influence on GH3536’s surface roughness.General method is difficult to determine the relationship between the process parameters and the process indicators. This article established a artificial neural network model of EDG GH3536 surface roughness which can forecast. Neural network algorithm use BP algorithm, the network structure is the 2-4-1.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nabeel H. Alharthi ◽  
Sedat Bingol ◽  
Adel T. Abbas ◽  
Adham E. Ragab ◽  
Ehab A. El-Danaf ◽  
...  

In this paper artificial neural network (ANN) and regression analysis were used for the prediction of surface roughness. Five models of neural network were developed and the model that showed best fit with experimental results was with 6 neurons in the hidden layer. Regression analysis was also used to build a mathematical model representing the surface roughness as a function of the process parameters. The coefficient of determination was found to be 94.93% and 93.63%, for the best neural network model and regression analysis, respectively, from the comparison of the models with thirteen validation experimental tests. Optical microscopy was conducted on two machined surfaces with two different values of feed rates while maintaining the spindle speed and depth of cut at the same values. Examining the surface topology and surface roughness profile for the two surfaces revealed that higher feed rate results in relatively thick roughness markings that are distantly spaced, whereas low values of feed rate result in thin surface roughness markings that are closely spaced giving better surface finish.


Author(s):  
.Mohanraj T ◽  
◽  
Tamilvanan A. ◽  

This work discusses the development of tool condition monitoring system (TCMs) during milling of AISI stainless steel 304 using sound pressure and vibration signals. Response Surface Methodology (RSM) was used to design the experiments. The various milling parameters and vegetable-based cutting fluids (VBCFs) were optimized to reduce the surface roughness and flank wear. The experimental results reveal the direct relationship between the flank wear and sound and vibration signals. The various statistical parameters were extracted from the measured signals and given as input data to train the artificial neural network (ANN). From the developed ANN model, the flank wear was predicted with the mean squared error (MSE) of 0.0656 mm.


2021 ◽  
Vol 13 (2) ◽  
pp. 116-123
Author(s):  
Yegireddi Shireesha ◽  
◽  
Nandipati Govind ◽  
◽  

Drill on different layered composite causes to force the layers ahead of it, creating unacceptable delamination on the leaving side. The current work describes the influence of different process parameters like spindle speed, feed, diameter of drill bit and addition of filler material on delamination damage on carbon and jute hybrid fiber composites during drilling operation. The experimental output for delamination is optimized by RSM-Response Surface Methodology and ANN-Artificial Neural Network Model. The experimental prediction model was established by considering DOE (design of experiments) of three levels performed with drilling operation by varying above said process parameters The optimum values for minimized delamination damage conditions found to be at (J-C-C-J) +5g of filler (fly-ash) composite. This is drilled with 8.5mm diameter drill bit with a feed of 0.08mm/rev at 875rpm speed. From the theoretical results it is recognized that cutting-speed and filler-material have much influencing factors on responses (delamination), and their individual contribution in an order of 47.25% and 47.32% respectively. By using Box-Behnken design RSM model is developed, with a feed-forward back-propagation method to develop the predictive ANN model which consists of 15 neurons in its hidden layer along with ANN Model. Here ANN Results (R2=0.99and RMSE=1.99) showed that the developed model is performing better to predict content of delamination when compare to RSM results (R2=0.97and RMSE=2.24).


2021 ◽  
Vol 75 (5) ◽  
pp. 277-283
Author(s):  
Jelena Lubura ◽  
Predrag Kojic ◽  
Jelena Pavlicevic ◽  
Bojana Ikonic ◽  
Radovan Omorjan ◽  
...  

Determination of rubber rheological properties is indispensable in order to conduct efficient vulcanization process in rubber industry. The main goal of this study was development of an advanced artificial neural network (ANN) for quick and accurate vulcanization data prediction of commercially available rubber gum for tire production. The ANN was developed by using the platform for large-scale machine learning TensorFlow with the Sequential Keras-Dense layer model, in a Python framework. The ANN was trained and validated on previously determined experimental data of torque on time at five different temperatures, in the range from 140 to 180 oC, with a step of 10 oC. The activation functions, ReLU, Sigmoid and Softplus, were used to minimize error, where the ANN model with Softplus showed the most accurate predictions. Numbers of neurons and layers were varied, where the ANN with two layers and 20 neurons in each layer showed the most valid results. The proposed ANN was trained at temperatures of 140, 160 and 180 oC and used to predict the torque dependence on time for two test temperatures (150 and 170 oC). The obtained solutions were confirmed as accurate predictions, showing the mean absolute percentage error (MAPE) and mean squared error (MSE) values were less than 1.99 % and 0.032 dN2 m2, respectively.


Sign in / Sign up

Export Citation Format

Share Document