scholarly journals Air Permeability of Maraging Steel Cellular Parts Made by Selective Laser Melting

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3118
Author(s):  
Annadurai Dhinakar ◽  
Bai-En Li ◽  
Yo-Cheng Chang ◽  
Kuo-Chi Chiu ◽  
Jhewn-Kuang Chen

Additive manufacturing, such as selective laser melting (SLM), can be used to manufacture cellular parts. In this study, cellular coupons of maraging steels are prepared through SLM by varying hatch distance. Air flow and permeability of porous maraging steel blocks are obtained for samples of different thickness based on the Darcy equation. By reducing hatch distance from 0.75 to 0.4 mm, the permeability decreases from 1.664 × 10−6 mm2 to 0.991 × 10−6 mm2 for 4 mm thick coupons. In addition, by increasing the thickness from 2 to 8 mm, the permeability increases from 0.741 × 10−6 mm2 to 1.345 × 10−6 mm2 at 16.2 J/mm3 energy density and 0.14 MPa inlet pressure. Simulation using ANSYS-Fluent is conducted to observe the pressure difference across the porous coupons and is compared with the experimental results. Surface artifacts and the actual morphology of scan lines can cause the simulated permeability to deviate from the experimental values. The measured permeability of maraging steel coupons is regression fit with both energy density and size of samples which provide a design guideline of porous mold inserts for industry applications such as injection molding.

2020 ◽  
Vol 861 ◽  
pp. 77-82
Author(s):  
Gan Li ◽  
Cheng Guo ◽  
Wen Feng Guo ◽  
Hong Xing Lu ◽  
Lin Ju Wen ◽  
...  

This study investigated the effect of laser power (P), scan speed (v) and hatch space (h) on densification behavior, surface quality and hardness of 18Ni300 maraging steel fabricated by selective laser melting (SLM). The results indicated that the relative density of the SLMed samples has a shape increase from 73% to 97% with the laser energy density increasing from 0.5 to 2.2 J/mm2. The relative density ≥ 99% was achieved at the energy density in the range of 2.2~5.9 J/mm2. The optimum process parameters were found to be laser power of 150~200 W, scan speed of 600mm/s and hatch space of 0.105mm. In addition, it was found that the hardness increased initially with the increasing relative density up to relative density of 90% and then little relationship, but finally increase again significantly. This work provides reference for determining process parameters for SLMed maraging steel and the development of 3D printing of die steels.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4174 ◽  
Author(s):  
Angelina Strakosova ◽  
Jiří Kubásek ◽  
Alena Michalcová ◽  
Filip Průša ◽  
Dalibor Vojtěch ◽  
...  

Maraging steels are generally characterized by excellent mechanical properties, which make them ideal for various industrial applications. The application field can be further extended by using selective laser melting (SLM) for additive manufacturing of shape complicated products. However, the final mechanical properties are strongly related to the microstructure conditions. The present work studies the effect of heat treatment on the microstructure and mechanical properties of 3D printed samples prepared from powder of high-strength X3NiCoMoTi 18-9-5 maraging steel. It was found that the as-printed material had quite low mechanical properties. After sufficient heat treatment, the hardness of the material increased from 350 to 620 HV0.1 and the tensile yield strength increased from 1000 MPa up to 2000 MPa. In addition, 3% ductility was maintained. This behavior was primarily affected by strong precipitation during processing.


Author(s):  
Cheng Luo ◽  
Yansong Zhang ◽  
Michael Oelscher ◽  
Yandong Shi ◽  
Niels Pasligh ◽  
...  

Abstract Application of maraging steels via selective laser melting process in the automotive industry was unavoidably involved in the resistance spot welding with conventional steels. Due to the rapid cooling rate of welding process, selective laser melted maraging steels with unique chemical components and stack microstructure could induced the different microstructural evolution, resulting in the complicated fracture behavior in the spot welds. This paper developed a FEA model to predict the fracture mode of spot welds of DP600 to maraging steel and the effect of test conditions and printing orientations were studied. A method was proposed to calculate the material properties of fusion zone by introducing the combined effect of melting DP600 and maraging steels via selective laser melting, resulting in the accurate prediction of fracture mode and strength of spot welds. An interlayer with lower strength was found around the fusion zone and the fracture path propagated in the region, resulting in the partial interfacial failure of spot welds. Meanwhile, the printing orientation had no significant effect on the fracture mode and strength of spot welds, but the different material properties of maraging steels could affect the fracture displacement of spot welds. These findings could pave a way to guide the application of maraging steels via selective laser melting process in multiple industries, especially in the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document