scholarly journals Preparation of Absorption-Resistant Hard Tissue Using Dental Pulp-Derived Cells and Honeycomb Tricalcium Phosphate

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3409
Author(s):  
Kiyofumi Takabatake ◽  
Keisuke Nakano ◽  
Hotaka Kawai ◽  
Yasunori Inada ◽  
Shintaro Sukegawa ◽  
...  

In recent years, there has been increasing interest in the treatment of bone defects using undifferentiated mesenchymal stem cells (MSCs) in vivo. Recently, dental pulp has been proposed as a promising source of pluripotent mesenchymal stem cells (MSCs), which can be used in various clinical applications. Dentin is the hard tissue that makes up teeth, and has the same composition and strength as bone. However, unlike bone, dentin is usually not remodeled under physiological conditions. Here, we generated odontoblast-like cells from mouse dental pulp stem cells and combined them with honeycomb tricalcium phosphate (TCP) with a 300 μm hole to create bone-like tissue under the skin of mice. The bone-like hard tissue produced in this study was different from bone tissue, i.e., was not resorbed by osteoclasts and was less easily absorbed than the bone tissue. It has been suggested that hard tissue-forming cells induced from dental pulp do not have the ability to induce osteoclast differentiation. Therefore, the newly created bone-like hard tissue has high potential for absorption-resistant hard tissue repair and regeneration procedures.

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Thakoon Thitiset ◽  
Siriporn Damrongsakkul ◽  
Supansa Yodmuang ◽  
Wilairat Leeanansaksiri ◽  
Jirun Apinun ◽  
...  

Abstract Background A novel biodegradable scaffold including gelatin (G), chitooligosaccharide (COS), and demineralized bone matrix (DBM) could play a significant part in bone tissue engineering. The present study aimed to investigate the biological characteristics of composite scaffolds in combination of G, COS, and DBM for in vitro cell culture and in vivo animal bioassays. Methods Three-dimensional scaffolds from the mixture of G, COS, and DBM were fabricated into 3 groups, namely, G, GC, and GCD using a lyophilization technique. The scaffolds were cultured with mesenchymal stem cells (MSCs) for 4 weeks to determine biological responses such as cell attachment and cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, cell morphology, and cell surface elemental composition. For the in vivo bioassay, G, GC, and GCD, acellular scaffolds were implanted subcutaneously in 8-week-old male Wistar rats for 4 weeks and 8 weeks. The explants were assessed for new bone formation using hematoxylin and eosin (H&E) staining and von Kossa staining. Results The MSCs could attach and proliferate on all three groups of scaffolds. Interestingly, the ALP activity of MSCs reached the greatest value on day 7 after cultured on the scaffolds, whereas the calcium assay displayed the highest level of calcium in MSCs on day 28. Furthermore, weight percentages of calcium and phosphorus on the surface of MSCs after cultivation on the GCD scaffolds increased when compared to those on other scaffolds. The scanning electron microscopy images showed that MSCs attached and proliferated on the scaffold surface thoroughly over the cultivation time. Mineral crystal aggregation was evident in GC and greatly in GCD scaffolds. H&E staining illustrated that G, GC, and GCD scaffolds displayed osteoid after 4 weeks of implantation and von Kossa staining confirmed the mineralization at 8 weeks in G, GC, and GCD scaffolds. Conclusion The MSCs cultured in GCD scaffolds revealed greater osteogenic differentiation than those cultured in G and GC scaffolds. Additionally, the G, GC, and GCD scaffolds could promote in vivo ectopic bone formation in rat model. The GCD scaffolds exhibited maximum osteoinductive capability compared with others and may be potentially used for bone regeneration.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2019 ◽  
Vol 98 (10) ◽  
pp. 1066-1072 ◽  
Author(s):  
V. Yianni ◽  
P.T. Sharpe

Cells have been identified in postnatal tissues that, when isolated from multiple mesenchymal compartments, can be stimulated in vitro to give rise to cells that resemble mature mesenchymal phenotypes, such as odontoblasts, osteoblasts, adipocytes, and myoblasts. This has made these adult cells, collectively called mesenchymal stem cells (MSCs), strong candidates for fields such as tissue engineering and regenerative medicine. Based on evidence from in vivo genetic lineage–tracing studies, pericytes have been identified as a source of MSC precursors in vivo in multiple organs, in response to injury or during homeostasis. Questions of intense debate and interest in the field of tissue engineering and regenerative studies include the following: 1) Are all pericytes, irrespective of tissue of isolation, equal in their differentiation potential? 2) What are the mechanisms that regulate the differentiation of MSCs? To gain a better understanding of the latter, recent work has utilized ChIP-seq (chromatin immunoprecipitation followed by sequencing) to reconstruct histone landscapes. This indicated that for dental pulp pericytes, the odontoblast-specific gene Dspp was found in a transcriptionally permissive state, while in bone marrow pericytes, the osteoblast-specific gene Runx2 was primed for expression. RNA sequencing has also been utilized to further characterize the 2 pericyte populations, and results highlighted that dental pulp pericytes are already precommitted to an odontoblast fate based on enrichment analysis indicating overrepresentation of key odontogenic genes. Furthermore, ChIP-seq analysis of the polycomb repressive complex 1 component RING1B indicated that this complex is likely to be involved in inhibiting inappropriate differentiation, as it localized to a number of loci of key transcription factors that are needed for the induction of adipogenesis, chondrogenesis, or myogenesis. In this review, we highlight recent data elucidating molecular mechanisms that indicate that pericytes can be tissue-specific precommitted MSC precursors in vivo and that this precommitment is a major driving force behind MSC differentiation.


2019 ◽  
Vol 10 ◽  
pp. 204173141983042 ◽  
Author(s):  
Dong Joon Lee ◽  
Jane Kwon ◽  
Luke Current ◽  
Kun Yoon ◽  
Rahim Zalal ◽  
...  

Although bone marrow–derived mesenchymal stem cells (MSCs) have been extensively explored in bone tissue engineering, only few studies using mesenchymal stem cells from mandible (M-MSCs) have been reported. However, mesenchymal stem cells from mandible have the potential to be as effective as femur-derived mesenchymal stem cells (F-MSCs) in regenerating bone, especially in the orofacial regions, which share embryonic origin, proximity, and accessibility. M-MSCs were isolated and characterized using mesenchymal stem cell–specific markers, colony forming assay, and multi-potential differentiation. In vitro osteogenic potential, including proliferation, osteogenic gene expression, alkaline phosphatase activity, and mineralization, was examined and compared. Furthermore, in vivo bone formations of F-MSCs and M-MSCs in rat critical sized defect were evaluated using microCT and histology. M-MSCs from rat could be successfully isolated and expanded while preserving their MSC’s characteristics. M-MSCs demonstrated a comparable proliferation and mineralization potentials and in vivo bone formation as F-MSCs. M-MSCs is a promising cell source candidate for craniofacial bone tissue engineering.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Hyunjin Noh ◽  
Mi Ra Yu ◽  
Kyoungin Choi ◽  
Dohui Hwang

Abstract Background and Aims Mesenchymal stem cells (MSC) are promising source of cell-based regenerative therapy; however, adequate cell functionality is a critical factor for the success of autotransplantation. Method We investigated the effects of metformin on chronic kidney disease (CKD)-associated cellular senescence using MSC isolated from sham operated and subtotal nephrectomized mice and further explored the protective role of metformin-treated CKD MSC in renal progression. Results When compared to normal MSC, MSC isolated from CKD mice displayed reduced proliferation and early senescence as determined by enlarged cell morphology, increased oxidative stress, accumulation of DNA damage response marker p53 binding protein 1 (53BP1), phospho p53, p16INK4a, and β-gal expression, and decreased cyclin-dependent kinase 4 (CDK4) and cyclin D. CKD MSC exhibited activation of NFκB resulting in expression of senescence-associated secretory phenotype (SASP) factors compared to normal MSC. All of these changes were significantly prevented by metformin treatment. In vivo, metformin-treated CKD MSC attenuated inflammation and fibrosis in UUO kidney as compared to CKD MSC. Co-culture of LPS or TGF-β1-treated HK2 cells with metformin-treated CKD MSC markedly decreased LPS or TGF-β-induced tubular expression of proinflammatory markers and fibrogenesis when compared to CKD MSC suggesting paracrine action of CKD MSC enhanced by metformin treatment. Conclusion Our data suggest that metformin inhibits cellular senescence of CKD MSC and improves their renoprotective effects.


2017 ◽  
Vol 131 (8) ◽  
pp. 699-713 ◽  
Author(s):  
Francesca Paino ◽  
Marcella La Noce ◽  
Alessandra Giuliani ◽  
Alfredo De Rosa ◽  
Serena Mazzoni ◽  
...  

Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells that have been successfully used in human bone tissue engineering. To establish whether these cells can lead to a bone tissue ready to be grafted, we checked DPSCs for their osteogenic and angiogenic differentiation capabilities with the specific aim of obtaining a new tool for bone transplantation. Therefore, hDPSCs were specifically selected from the stromal–vascular dental pulp fraction, using appropriate markers, and cultured. Growth curves, expression of bone-related markers, calcification and angiogenesis as well as an in vivo transplantation assay were performed. We found that hDPSCs proliferate, differentiate into osteoblasts and express high levels of angiogenic genes, such as vascular endothelial growth factor and platelet-derived growth factor A. Human DPSCs, after 40 days of culture, give rise to a 3D structure resembling a woven fibrous bone. These woven bone (WB) samples were analysed using classic histology and synchrotron-based, X-ray phase-contrast microtomography and holotomography. WB showed histological and attractive physical qualities of bone with few areas of mineralization and neovessels. Such WB, when transplanted into rats, was remodelled into vascularized bone tissue. Taken together, our data lead to the assumption that WB samples, fabricated by DPSCs, constitute a noteworthy tool and do not need the use of scaffolds, and therefore they are ready for customized regeneration.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Huaijuan Ren ◽  
Yunxia Sang ◽  
Fengli Zhang ◽  
Zhaoqing Liu ◽  
Nianmin Qi ◽  
...  

Although mesenchymal stem cells (MSCs) based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC), dental pulp (DP), and menstrual blood (MB) are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.


2018 ◽  
Vol 9 ◽  
pp. 204173141775276 ◽  
Author(s):  
Alessander Leyendecker Junior ◽  
Carla Cristina Gomes Pinheiro ◽  
Tiago Lazzaretti Fernandes ◽  
Daniela Franco Bueno

Dental pulp represents a promising and easily accessible source of mesenchymal stem cells for clinical applications. Many studies have investigated the use of human dental pulp stem cells and stem cells isolated from the dental pulp of human exfoliated deciduous teeth for bone tissue engineering in vivo. However, the type of scaffold used to support the proliferation and differentiation of dental stem cells, the animal model, the type of bone defect created, and the methods for evaluation of results were extremely heterogeneous among these studies conducted. With this issue in mind, the main objective of this study is to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of human dental pulp stem cells and stem cells from human exfoliated deciduous teeth (SHED) for bone regeneration was evaluated. The article search was conducted in PubMed/MEDLINE and Web of Science databases. Original research articles assessing potential of human dental pulp stem cells and SHED for in vivo bone tissue engineering, published from 1984 to November 2017, were selected and evaluated in this review according to the following eligibility criteria: published in English, assessing dental stem cells of human origin and evaluating in vivo bone tissue formation in animal models or in humans. From the initial 1576 potentially relevant articles identified, 128 were excluded due to the fact that they were duplicates and 1392 were considered ineligible as they did not meet the inclusion criteria. As a result, 56 articles remained and were fully analyzed in this systematic review. The results obtained in this systematic review open new avenues to perform bone tissue engineering for patients with bone defects and emphasize the importance of using human dental pulp stem cells and SHED to repair actual bone defects in an appropriate animal model.


Sign in / Sign up

Export Citation Format

Share Document