scholarly journals Effect of Loading and Heating History on Deformation of LaCoO3

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3543
Author(s):  
Mykola Lugovy ◽  
Dmytro Verbylo ◽  
Nina Orlovskaya ◽  
Michael Reece ◽  
Jakob Kuebler ◽  
...  

The aim of this work was to study cyclic stress–strain deformation behavior of LaCoO3 as a function of loading and heating history. The ferroelastic hysteretic deformation of LaCoO3 at different stresses and temperatures was characterized using effective Young’s modulus, hysteresis loop area and creep strain shift parameters. The deformation behavior of LaCoO3 was not significantly affected by the previous loading and heating history when tested at constant temperature. The high temperature strength and Young’s modulus of LaCoO3 were higher compared to at room temperature. A creep strain shift parameter was introduced to characterize creep strain in LaCoO3 for the first time.

2016 ◽  
Vol 879 ◽  
pp. 1344-1349 ◽  
Author(s):  
Yonosuke Murayama ◽  
Erdnechuluun Enkhjavkhlan ◽  
Akihiko Chiba

The Young’s modulus of Ti-Cr-Sn-Zr alloy varies with the composition of Cr, Sn and Zr, in which the elements act as β stabilizers. Some Ti-Cr-Sn-Zr alloys show very low Young’s modulus under 50GPa. The amount of Zr in alloys with very low Young's modulus increases with the decrease of Cr. We investigated the Young’s modulus and deformation behavior of Ti-xCr-Sn-Zr (x=0~1mass%) alloys containing a large amount of Zr. The quenched microstructure of Ti-Cr-Sn-Zr alloys changes from martensitic structure to β single-phase structure if the amounts of β stabilized elements are increased. The Ti-Cr-Sn-Zr alloys with compositions close to the transitional composition of microstructure from martensite to β phase show minimum Young’s modulus. The clear microstructural transition disappears and the minimum Young’s modulus increases if the amount of Cr becomes too small. In Ti-Cr-Sn-Zr alloys containing a large amount of Zr, Young’s modulus depends on β phase that is intermingled with martensite.


1980 ◽  
Vol 102 (4) ◽  
pp. 360-365
Author(s):  
R. W. Dent

A review of the existing theories for the Young’s modulus of continuous filament random webs is given. It is shown that the effect of buckling of the transverse filaments must be included in the theory. This means that filament bending and bond rotation must also be included in the model for the theory to be consistent. Accordingly, we have derived a theory including the effects of buckling, filament bending and bond rotation for the first time and the results are given and compared to those obtained where buckling was neglected.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 476 ◽  
Author(s):  
Kyong Min Kim ◽  
Hee Young Kim ◽  
Shuichi Miyazaki

Ti alloys have attracted continuing research attention as promising biomaterials due to their superior corrosion resistance and biocompatibility and excellent mechanical properties. Metastable β-type Ti alloys also provide several unique properties such as low Young’s modulus, shape memory effect, and superelasticity. Such unique properties are predominantly attributed to the phase stability and reversible martensitic transformation. In this study, the effects of the Nb and Zr contents on phase constitution, transformation temperature, deformation behavior, and Young’s modulus were investigated. Ti–Nb and Ti–Nb–Zr alloys over a wide composition range, i.e., Ti–(18–40)Nb, Ti–(15–40)Nb–4Zr, Ti–(16–40)Nb–8Zr, Ti–(15–40)Nb–12Zr, Ti–(12–17)Nb–18Zr, were fabricated and their properties were characterized. The phase boundary between the β phase and the α′′ martensite phase was clarified. The lower limit content of Nb to suppress the martensitic transformation and to obtain a single β phase at room temperature decreased with increasing Zr content. The Ti–25Nb, Ti–22Nb–4Zr, Ti–19Nb–8Zr, Ti–17Nb–12Zr and Ti–14Nb–18Zr alloys exhibit the lowest Young’s modulus among Ti–Nb–Zr alloys with Zr content of 0, 4, 8, 12, and 18 at.%, respectively. Particularly, the Ti–14Nb–18Zr alloy exhibits a very low Young’s modulus less than 40 GPa. Correlation among alloy composition, phase stability, and Young’s modulus was discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jingyi Cheng ◽  
Zhijun Wan ◽  
Yidong Zhang ◽  
Wenfeng Li ◽  
Syd S. Peng ◽  
...  

This paper presents an experimental investigation of anisotropic strength and deformation behavior of coal measure shale. The effect of two factors (i.e., anisotropy and water content) on shale strength and deformation behavior was studied. A series of uniaxial and triaxial compression tests were conducted on both room dried and water saturated samples for different lamination angles. The test results indicate that (1) the compressive strength, cohesion, internal friction angle, tangent Young’s modulus, and axial strain corresponding to the peak and residual strengths of room dried specimens exhibit anisotropic behavior that strongly depends on the orientation angle(β); (2) in comparison to the room dried samples, the compressive strength and Young’s modulus as well as the anisotropy are all reduced for water saturated specimens; and (3) the failure mechanism of the samples can be summarized into two categories: sliding along lamination and shearing of rock material, with the type occurring in a particular situation depending strongly on the lamination orientation angles with respect to the major principal stress. According to the findings, it is strongly recommended that the effect of anisotropy and water content on the strength and deformation behavior of the rock must be considered in ground control designs.


2003 ◽  
Vol 795 ◽  
Author(s):  
I. Chasiotis ◽  
S. W. Cho ◽  
T. A. Friedmann ◽  
J. P. Sullivan

ABSTRACTThe mechanical properties of hydrogen-free tetrahedral amorphous diamond-like carbon have been investigated in connection with its elastic and failure properties. Micro-tension specimens of gage thickness of 1.2–1.8 μm and widths of 10 μm or 50 μm have been fabricated by the Sandia National Laboratories (SNL). The mechanical characterization has been conducted via in situ AFM measurements and Digital Image Correlation (DIC) data strain analysis and the local deformation fields of (a) uniform and (b) internally notched tension specimens with acute notches (K=27) have been experimentally obtained. Young's modulus and Poisson's ratio were measured for the first time directly from such small specimens and averaged 750 GPa and v=0.16 respectively, while the tensile strength was found to be very consistent averaging 7.1 GPa. Stressed material domains with smaller dimensions in the vicinity of micronotches exhibited even higher failure strengths reaching 11.5 GPa with limited data scatter. AFM images of in situ tested specimens have indicated sp3 to sp2 phase transformations on the film surface that was subject to ultra-high tensile stresses (>6 GPa). This is the first time these phase transformations are observed during tensile tests of brittle materials.


Author(s):  
Valerian Schuster ◽  
Erik Rybacki ◽  
Audrey Bonnelye ◽  
Johannes Herrmann ◽  
Anja M. Schleicher ◽  
...  

AbstractThe mechanical behavior of the sandy facies of Opalinus Clay (OPA) was investigated in 42 triaxial tests performed on dry samples at unconsolidated, undrained conditions at confining pressures (pc) of 50–100 MPa, temperatures (T) between 25 and 200 °C and strain rates ($$\dot{\varepsilon }$$ ε ˙ ) of 1 × 10–3–5 × 10–6 s−1. Using a Paterson-type deformation apparatus, samples oriented at 0°, 45° and 90° to bedding were deformed up to about 15% axial strain. Additionally, the influence of water content, drainage condition and pre-consolidation was investigated at fixed pc–T conditions, using dry and re-saturated samples. Deformed samples display brittle to semi-brittle deformation behavior, characterized by cataclastic flow in quartz-rich sandy layers and granular flow in phyllosilicate-rich layers. Samples loaded parallel to bedding are less compliant compared to the other loading directions. With the exception of samples deformed 45° and 90° to bedding at pc = 100 MPa, strain is localized in discrete shear zones. Compressive strength (σmax) increases with increasing pc, resulting in an internal friction coefficient of ≈ 0.31 for samples deformed at 45° and 90° to bedding, and ≈ 0.44 for samples deformed parallel to bedding. In contrast, pre-consolidation, drainage condition, T and $$\dot{\varepsilon }$$ ε ˙ do not significantly affect deformation behavior of dried samples. However, σmax and Young’s modulus (E) decrease substantially with increasing water saturation. Compared to the clay-rich shaly facies of OPA, sandy facies specimens display higher strength σmax and Young’s modulus E at similar deformation conditions. Strength and Young’s modulus of samples deformed 90° and 45° to bedding are close to the iso-stress Reuss bound, suggesting a strong influence of weak clay-rich layers on the deformation behavior.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 1039-1043 ◽  
Author(s):  
K. PRASHANTHI ◽  
M. MANDAL ◽  
S. P. DUTTAGUPTA ◽  
V. RAMGOPAL RAO ◽  
P. PANT ◽  
...  

In this paper, the elastic properties of Dy modified BiFeO3 (BDFO) multiferroic films deposited on Si substrate are reported for the first time. The mechanical properties are extracted using nanoindentation technique. The Young's modulus and hardness of the BDFO films are found to be 140 ± 3 GPa and 7.5 ± 0.3 GPa respectively. In this study the properties in the region of penetration depth up to 20% of BDFO film thickness, are found out. For these indentation depths, Young's modulus and hardness are almost constant indicating that substrate effects are not significant. It is also confirmed that neither cracks, nor pile-ups can be observed for indentation loads up to 10 mN. However, at higher indentation loads (>10 mN), bulging and spallation are observed suggesting delamination and buckling of the film. The mechanical properties of BDFO films are similar to that reported for lead zirconate titanate (PZT), while offering many novel properties. This report is accordingly expected to facilitate the design of BDFO-based micro-electromechanical systems devices.


2019 ◽  
Vol 56 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Qionglin Li ◽  
Xianzhang Ling ◽  
Jinjun Hu ◽  
Zhiwei Zhou

The present paper reports the results of a laboratory experiment that aimed to investigate the residual deformation and stiffness changes of frozen silty clays under cyclic triaxial loading. Two sets of cyclic stress magnitude — namely, low and high level — were applied to the reconstituted artificial frozen soil specimens with identical properties, and the effect of six levels of confining pressure was examined. The results indicate that two distinct development categories of residual axial strain with number of loading cycles are induced by the low- and high-level cyclic stress. The dynamic Young’s modulus derived from each test experiences a significant increase with the number of loading cycles, which is partly attributed to the cyclic densification. A special observation from the tests under high-level cyclic stress along with a confining pressure of 0.3 MPa also indicates that the dynamic Young’s modulus keeps as a relatively constant value when the change of residual volumetric deformation transfers from compression to dilation. The empirical relationships were proposed to properly reflect the development of the residual axial strain and dynamic Young’s modulus with the number of loading cycles.


Sign in / Sign up

Export Citation Format

Share Document