scholarly journals The Influence of the Hydrophobic Polymeric Coating on 5-ASA Release from the Bipolymeric Milibeads with Amidated Pectin

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3924
Author(s):  
Dorota Wójcik-Pastuszka ◽  
Kinga Barczyszyn ◽  
Witold Musiał

The industrial polymeric carriers for peroral mesalazine application exploit, i.a., cellulose or polyacrylic acid derivatives, polyvinylpyrrolidone, and modified starch. Pectins, as natural polymers, are interesting materials in pharmaceutical applications due to properties such as non-toxicity, biocompatibility, and biodegradability. The aim of the study was the evaluation of the release of the drug from coated pectin beads doped with synthetic polymers as drug carriers to the colon, as well as interactions between ingredients. The drug release was carried out using basket apparatus. The amount of 5-ASA (5-aminosalicylic acid, mesalazine) released to the pH = 7.4 buffer with pectinase was measured at selected time intervals using UV-Vis spectroscopy. The zero-, first-, and second-order kinetics, as well as Higuchi, Korsmeyer–Peppas, and Hixon–Crowell equations, were used to analyze the release pattern. The interactions between beads components were investigated employing FTIR spectrophotometry and DSC study. The dissolution of the drug was divided into two parts. It was found that the release of 5-ASA followed mainly the Higuchi equation. The mass transport in the first stage of the release followed a non-Fickian model and the parameter n was in the range of 0.74 ± 0.2–0.99 ± 0.2. The formulation doped with PA (polyacrylic acid) was the most appropriate and capable of overcoming the variable conditions of the gastrointestinal tract.

1995 ◽  
Vol 394 ◽  
Author(s):  
Curt Thies

Numerous research groups currently are working to develop microcapsules, microspheres, and nanoparticles able to function as effective drug carriers. Much effort is focused on forming biodegradable particles from iactide-glycolide copolymers (PLGA)1−3. Although microparticles prepared from PLGA copolymers have had many successes, PLGA copolymers are not ideal drug carriers. Many other materials conceptually could be formed into suitable particulate drug carriers: synthetic polymers other than PLGA, natural polymers, chemical derivatives of natural polymers, selected inorganics, and nonpolymeric lipids. The purpose of this paper is not to discuss the advantages and limitations of each of these classes of carrier materials, but to contrast the features of PLGA copolymers with those of potentially competitive natural polymers. PLGA copolymers are used as the reference standard, because they are an approved family of biodegradable drug carrier polymers utilized by many research groups globally.


2017 ◽  
Vol 68 (7) ◽  
pp. 1518-1423
Author(s):  
Adina Turcu Stiolica ◽  
Mariana Popescu ◽  
Maria Viorica Bubulica ◽  
Carmen Nicoleta Oancea ◽  
Claudiu Nicolicescu ◽  
...  

Gold nanoparticles are considered the newest drug carriers for different diseases. Therefore it is appropriate continuous optimization of their preparation. In this study, gold colloids with an average size of 1 - 26 nm were obtained by the reduction of tetrachloroauric acid with trisodium citrate. The nanomaterials were characterized by UV-Vis spectroscopy and dynamic light scattering technique. In addition, zeta potential was measured for samples synthesized in order to determine the stability of the colloids. A Two-level Full Factorial design was chosen to determine the optimum set of process parameters (chloroauric acid concentration and sodium citrate concentration) and their effect on various gold nanoparticles characteristics (size and zeta potential). These effects were quantified using Design of Experiments (DoE) with 5 runs and 1 centerpoint. The selected objective and process model in this investigation are screening and interaction. Findings from this research show that to obtain particles larger than 35 nm, it is recommended to increase sodium citrate concentration, at low chloroauric acid values. These conditions will help to achieve smaller zeta potential, too.


Author(s):  
Ratnaparkhi M.P. ◽  
Karnawat G.R. ◽  
Andhale R.S.

Oral route is most preferable route of administration for various drugs, because it is convenient, economical, safest route. Fast dissolving tablets are popular nowadays, as they disintegrated in mouth within a few seconds without using water for swallow. Problems like Dysphagia in pediatric and geriatric patients have been overcome by formulating Fast dissolving tablet. Natural polymers are preferable because they are chemically inert, nontoxic, less expensive, biodegradable, and available easily than synthetic polymers. Natural polymers are obtained from the natural origin so they are devoid of any side effect. It is proved from the previous studies that Natural polymers are more-safe and effective than the synthetic polymers. Natural polymers improve the properties of tablet and they are used as binder, diluent, superdisintegrant, they also enhance the solubility of poorly water-soluble drug, decrease the disintegration time and provide nutritional supplement. The aim of the present article is to study various natural polymers used in fast dissolving tablets.


2020 ◽  
Vol 2 (1) ◽  
pp. 44

The budding field of Nanotechnology has become one of the most popular areas of interest for current research and development, especially in the research areas of polymer science and technology. Natural Polysaccharide polymers are found abundant in nature and are now frequently been used for the preparation of many nanomaterials. When compared to the synthetic polymers available, natural biopolymers are more biocompatible, biodegradable, and renewable in nature. The production of Nanomaterials from biopolymers has eventually improved the properties of the Nano-products developed. Nature has provided many different varieties of natural polymers; one such plant-derived polymer is the plant Gum exudate. Gums are commonly exuded by plants at very small quantities, forming conspicuous incrustations. These Natural gums exudates are polysaccharides. They are chemically inert, biocompatible, biodegradable, and sustainable in nature. In this study, plant gum-based biopolymers were used for the synthesis of nanoparticles. The natural gum exudates were collected from the plants' Araucaria heterophylla, Azadirachta indica. The obtained biopolymers were purified by the solvent extraction method and were characterized by UV-Vis Spectroscopy, FTIR, and TGA. Further, the purified biopolymers were subjected to the encapsulation of drugs (as Nanocarrier) and coating for SPIONs (superparamagnetic iron oxide nanoparticles). The synthesized nanoparticles were characterized by UV-Vis Spectroscopy, FTIR, SEM, EDAX, TEM, and AFM. The biopolymer-based nanocarriers were about 200nm in size and were utilized for effective drug delivery studies using MCF-7 Breast cancer lines. Finally, the biopolymer encapsulated SPIONs particles of size around 40nm were used for water treatment studies - removing the heavy metal chromium as well as mosquito larvae from water. Thus, the nano-products developed were found to be more eco-friendly, efficient, and also cost-effective.


2019 ◽  
Vol 1 (1) ◽  
pp. 012-018

Medical engineering, as an auspicious conjunction between healthcare practice, biotechnology and materials science, has emerged over time with the aim to improve human’s health. Cornea, an essential part of the eye responsible for most of its optical power, suffers every day due to accidents or various diseases. To avoid complications and overcome limitations of conventional transplantation and other surgical procedures, biomaterials and bioprinting proved beneficial can be used to design optimal devices for corneal implantation. During medical evolution, biopolymers have been used especially in tissue engineering applications, due to their high elasticity and flexibility, adaptable optical properties and tunable microstructure. Natural polymers are well accepted by the body, their offer support for tissue regeneration and, in most cases, they are easy to obtain. Beside natural-derived biopolymers, synthetic polymers can be used in bioprinting to develop performance-enhanced platforms for corneal bioengineering. Bioprinting represents an innovative method to obtain a corneal implant and has the advantage to enable the facile control over some specific properties, such as thickness, color, elasticity or shape.


2020 ◽  
Vol 4 (4) ◽  
pp. 175
Author(s):  
Dorel Feldman

Poly(vinyl alcohol) (PVA) is a thermoplastic synthetic polymer, which, unlike many synthetic polymers, is not obtained by polymerization, but by hydrolysis of poly(vinyl acetate) (PVAc). Due to the presence of hydroxylic groups, hydrophilic polymers such as PVA and its composites made mainly with biopolymers are used for producing hydrogels that possess interesting morphological and physico-mechanical features. PVA hydrogels and other PVA composites are studied in light of their numerous application for electrical film membranes for chemical separation, element and dye removal, adsorption of metal ions, fuel cells, and packaging. Aside from applications in the engineering field, PVA, like other synthetic polymers, has applications in medicine and biological areas and has become one of the principal objectives of the researchers in the polymer domain. The review presents a few recent applications of PVA composites and contributions related to tissue engineering (repair and regeneration), drug carriers, and wound healing.


2019 ◽  
Vol 25 (11) ◽  
pp. 1172-1186 ◽  
Author(s):  
Dilshad Qureshi ◽  
Suraj Kumar Nayak ◽  
Samarendra Maji ◽  
Doman Kim ◽  
Indranil Banerjee ◽  
...  

Background: With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient’s body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs. Methods: Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery. Results: Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications. Conclusion: In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.


2019 ◽  
pp. 152808371986693 ◽  
Author(s):  
Shirin Rafieian ◽  
Hamid Mahdavi ◽  
Mir Esmaeil Masoumi

Natural polymers such as chitosan and Aloe vera are widely used in novel wound dressings due to their biocompatibility and biodegradability. A problem associated with these polymers is their poor mechanical behavior. Efforts have been made to improve the mechanical properties by mixing synthetic polymers such as PVA, but the role of chitosan and Aloe vera in the final dressing is dimmed. The techniques are also time-consuming and costly and there is still a need for an acceptable and affordable wound dressing which can be made through easily accessible techniques. A new but very simple method is introduced in this work for incorporating PVA nanofibers with Aloe vera-containing chitosan films. Using this method the levels of Aloe vera and chitosan in the system can be optimized at higher scales while benefiting from PVA best mechanical properties as a composite layer. Higher amounts of Aloe vera and chitosan in the system lead to lower product costs and more biocompability. The biological properties of films were examined through cell cytotoxicity and antibacterial tests and compared with Atomic force microscopy results. Physical and mechanical properties of films containing PVA nanofibers were characterized by water vapor permeability, swelling ratio, and tensile tests. The morphology of fibers before and after applying on the films was also observed by scanning electron microscopy. According to the results, this combination of natural and synthetic polymers has led to an affordable, biocompatible, and flexible film for wound dressing applications.


1991 ◽  
Vol 255 ◽  
Author(s):  
Bernard Lotz

AbstractThe crystal structures and crystalline morphologies of natural and synthetic polymers are briefly reviewed. Analogies and differences between these two systems are presented. Several examples of cross-fertilization of research in the two fields are presented, with emphasis, among natural polymers, on fibrous polypeptides and proteins.


Sign in / Sign up

Export Citation Format

Share Document