scholarly journals The Study of Magnetic Properties for Non-Magnetic Ions Doped BiFeO3

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4061
Author(s):  
Yongtao Li ◽  
Liqing Liu ◽  
Dehao Wang ◽  
Hongguang Zhang ◽  
Xuemin He ◽  
...  

BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.

2012 ◽  
Vol 512-515 ◽  
pp. 1434-1437
Author(s):  
Xing Ao Li ◽  
Peng Li ◽  
Yong Tao Li ◽  
Jian Ping Yang ◽  
Qiu Fei Bai ◽  
...  

Bi0.95Eu0.05Fe0.95Co0.05O3 Nanoparticles sample was prepared by sol-gel process. The microstructure of samples was analysised by X-ray diffraction(XRD), the result indicated that it was the single phase rhombohedral perovskite structure. The morphology of samples was measured by scanning electron microsopy(SEM), the SEM photograph of samples indicated that the nanoparticles of Bi0.95Eu0.05Fe0.95Co0.05O3 sample were small than that of BiFeO3. The valence states of Fe ions in the samples was analysised by the X-ray absorption spectroscopy(XAS). The XAS of Fe2p showed that it was the mixed valence states (Fe2+ and Fe3+) of Fe ions in samples, and the binding energy of Bi0.95Eu0.05Fe0.95Co0.05O3 was bigger than that of BiFeO3.The magnetic characteristics of the samples were measured by vibrating sample magnetometer (VSM),the results showed that the weak metamagnetism were obtained from clear hysteresis loop and the magnetic saturation reached 0.408emu/g,compared with BiFeO3 sample, the magnetic properties were significantly enhanced.


Nano Research ◽  
2021 ◽  
Author(s):  
Alevtina Smekhova ◽  
Alexei Kuzmin ◽  
Konrad Siemensmeyer ◽  
Chen Luo ◽  
Kai Chen ◽  
...  

AbstractModern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2.3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.


2012 ◽  
Vol 100 (17) ◽  
pp. 172907 ◽  
Author(s):  
A. Mesquita ◽  
B. M. Fraygola ◽  
V. R. Mastelaro ◽  
J. A. Eiras

2007 ◽  
Vol 1032 ◽  
Author(s):  
Yong Jae Cho ◽  
chang hyun Kim ◽  
jeunghee Park

AbstractWe synthesized Ge and Ge1-xMx (M = Mn, Co, and Fe, x ≤ 0.2) nanowires using thermal vapour transport method. All nanowires consisted of single-crystalline Ge nanocrystals grown uniformly with the [111] direction. High-resolution X-ray diffraction pattern shows no cluster formation for all Ge1-xMx nanowires. The Mn and Fe doping decreases the lattice constant, but not Co doping. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurement revealed that the Mn2+ and Fe2+ ions preferentially occupy the tetrahedral sites, substituting for Ge. We suggest that the Mn or Fe ions produce dopant-acceptor hybridization with host defects in p-type Ge, but not Co ions. The magnetic moment of Mn2+ ions reaches a maximum for x = ∼ 0.1, which is much larger than that of the Fe2+ ions. The magnetization measurement also confirms the room-temperature ferromagnetism of Mn-doped Ge nanowires, which is maximized at x = ∼ 0.1. We conclude that the Mn ions are most efficiently doped into the Ge nanowires to form a ferromagnetic semiconductor.


Author(s):  
Tran Thi Viet Nga

The CoFe2O4/CoFe2/SiO2 nanocomposite particles were synthesized using a sol- gel method and calcination in hydrogen. The magnetic properties and structure of nanocomposite particles calcinated at 600 oC and 900 oC in range of calcination time from 1 h to 4 h were investigated. The phase composition, surface morphology and magnetic properties of the nanocomposites were investigated using X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometer. The XRD patterns indicate the existence of both CoFe2O4 and CoFe2 phases in the nanocomposite after reducing at 600 oC for 2 h and 3 h. The single phase CoFe2 was obtained after reducing at 900 oC. The average particles size was evenly distributed in the range of 20 nm to 120 nm. The magnetization increases significantly with increasing of reduction temperature.


2013 ◽  
Vol 789 ◽  
pp. 87-92 ◽  
Author(s):  
Dwita Suastiyanti ◽  
Bambang Soegijono ◽  
M. Hikam

The formation of barium hexaferrite, BaFe12O19 single phase with nanosize crystalline is very important to get the best performance especially magnetic properties. The samples were prepared by sol gel method in citric acid-metal nitrates system. Hence the mole ratios of Ba2+/Fe3+ were varied at 1:12 and 1:11.5 with pH of 7 in all cases using ammonia solution. The solution was then heated at 80-90°C for 3 to 4 hours. Then it was kept on a pre-heated oven at 150°C. The samples were then heat treated at 450°C for 24 hours. Sintering process was done at 850°C and 1000°C for 10 hours.Crystallite size was calculated by X-Ray Diffraction (XRD) peaks using scherrer formula. To confirm the formation of a single phase, XRD analyses were done by comparing the sample patterns with standard pattern. The peak shifting of pattern could be seen from XRD pattern using rocking curves at extreme certain 2θ. It was used MPS Magnet Physik EP3 Permagraph L to know magnetic characteristics. This method can produce BaFe12O19 nanosize powder, 22-34 nm for crystallite size and 55.59-78.58 nm for particle size. A little diference in nanosize affects the peak shifting of XRD pattern significantly but shows a little difference in magnetic properties especially for samples at 850°C and 1000°C with mole ratio of 1:12 respectively. The well crystalline powder is formed at mole ratio of 1:11.5 at 850°C since it has the finest particle (55.59 nm) and crystalline (21 nm), the highest remanent magnetization (0.161 T) and the lowest intrinsic coersive (275.8 kA/m). It is also fitting exactly to the standard diffraction pattern with the highest value of best Figure of Merit (FoM), 90%. XRD peak position of this sample is almost same with XRD peak position of another sample with sinter temperature 1000°C at same mole ratio.


2012 ◽  
Vol 510-511 ◽  
pp. 343-347
Author(s):  
S. Nasir ◽  
M.A. Malik ◽  
G. Asghar ◽  
G.H. Tariq ◽  
M. Akram ◽  
...  

Ni-Zn ferrite nanoparticles with Cr doping, having the general formula Ni0.5Zn0.5CrxFe2-xO4(x = 0.1, 0.3, 0.5) were prepared by simplified sol-gel method and sintered at 750±5°C. The structural and magnetic properties of the samples sintered at 750±5°C were studied. From X-ray diffraction (XRD) patterns, it was confirmed that the samples have single phase spinel structure. The crystallite size was calculated from the most intense peak (3 1 1) using the Debye Scherrer formula and was found to be in the range of 29-34 nm. The scanning electron microscope images showed that the particle size of the samples were in the range 60-120nm. Quantum design PPMS model 6700 was used to study magnetic properties of these samples. The effect of Cr doping on the magnetic properties was explained on the basis of cations distribution in the crystal structure.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 954-957
Author(s):  
IKUO NAKAI ◽  
HIRONOBU MAEDA ◽  
AKIR AISHII

We have carried out magnetization and extended X-ray absorption fine structure measurements on an amorphous Gd68Cu32 ferromagent to investigate the relation between magnetic properties and the local structure in amorphous materials. Fluctuations in the exchange interaction for the ferromagnet are estimated experimentally within the framework of the nearest neighbor Heisenberg model.


Sign in / Sign up

Export Citation Format

Share Document