scholarly journals Improved Mechanical, Anti-UV Irradiation, and Imparted Luminescence Properties of Cyanate Ester Resin/Unzipped Multiwalled Carbon Nanotubes/Europium Nanocomposites

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4244
Author(s):  
Na Yang ◽  
Xiaohua Qi ◽  
Di Yang ◽  
Mengyao Chen ◽  
Yao Wang ◽  
...  

Cyanate ester resin (CER) is an excellent thermal stable polymer. However, its mechanical properties are not appropriate for its application, with brittle weakness, and it has poor functional properties, such as luminescence. This work innovatively combines the luminescence property and the improved mechanical properties with the inherent thermal property of cyanate ester. A novel nanocomposite, CER/uMWCNTs/Eu, with multi-functional properties, has been prepared. The results show that with the addition of 0.1 wt.% of uMWCNTs to the resin, the flexural strength and tensile strength increased 59.3% and 49.3%, respectively. As the curing process of the CER progresses, the injected luminescence signal becomes luminescence behind the visible (FBV). The luminescence intensity of CER/uMWCNTs/Eu was much stronger than that of CER/MWCNTs/Eu, and the luminescence lifetime of CER/MWCNTs/Eu and CER/uMWCNTs/Eu was 8.61 μs and 186.39 μs, respectively. FBV exhibited great potential in the embedment of photon quantum information. Therefore, it can be predicted that CER/uMWCNTs/Eu composites will not only have a wide range of applications in sensing, detection, and other aspects, but will also exhibit great potential in the embedding of photon quantum information.

2019 ◽  
Vol 9 (11) ◽  
pp. 2365
Author(s):  
Hongtao Cao ◽  
Beijun Liu ◽  
Yiwen Ye ◽  
Yunfang Liu ◽  
Peng Li

Bisphenol A dicyanate (BADCy) resin nanoparticles were synthesized by precipitation polymerization and used to modulate the microstructure of the BADCy resin matrix. A microscopic mechanism model was used to characterize the curing process of BADCy resin systems with different contents of the prepared nanoparticles. Due to the curing process of the thermosetting resin being analogous to the crystallization process of the polymer, the Avrami equation was used to analyze the microscopic mechanism of the curing process. The reactive functional groups, structure, and size of the prepared BADCy resin nanoparticles were characterized by FT-IR, SEM, and TEM, respectively. The kinetic parameters of different systems were then obtained using the Avrami equation, and they adequately explained the microscopic mechanism of the curing process. The results showed that the Avrami equation effectively described the formation and growth of gel particles during the curing process of the BADCy resins. The addition of nanoparticles can affect the curing behavior and curing rate. Since the reaction between the BADCy resin nanoparticles and the matrix is dominant, the formation process of the gel particles was neglected. This phenomenon can be understood as the added BADCy resin nanoparticles replacing the formation of gel particles. The reasons for accelerated curing were analyzed from the perspective of thermodynamics and kinetics. Besides this, the Arrhenius equation for non-isothermal conditions correctly accounted for the change in the cross-linked mechanism in the late-stage curing process. A comparison of the theoretical prediction with the experimental data shows that the Avrami theory of phase change can simulate the curing kinetics of different BADCy resin systems well and explain the effects of BADCy resin nanoparticles on the formation of the microstructure.


2011 ◽  
Vol 51 (7) ◽  
pp. 1404-1408 ◽  
Author(s):  
Jing Liu ◽  
Naidong Ding ◽  
Renfu Xu ◽  
Qihui He ◽  
Jian Shen ◽  
...  

2016 ◽  
Vol 30 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Hongfeng Li ◽  
Jiyou Gu ◽  
Changwei Liu ◽  
Dezhi Wang ◽  
Chunyan Qu

Multiwalled carbon nanotubes (MWCNTs) that were treated with mixed acids were used to reinforce the cyanate ester resin. Meanwhile, the relationship among structure, morphology, and property of the modified resin was investigated. The treated MWCNTs were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS). The XPS results showed that the oxygen content in the treated MWCNTs was higher than that of untreated MWCNTs and the FTIR results indicated the presence of oxygen-containing functional groups on the treated MWCNTs. The microstructure of the resin was characterized by scanning electron microscopy and transmission electron microscopy. The results showed that the dispersion properties of the treated MWCNTs in the resin matrix were improved and compared with the untreated analogue. Addition of MWCNTs to the resin had little effect on the thermodynamic properties of the resin system. Upon addition of 0.8 wt% of MWCNTs to the resin, the glass transition temperature of the cured resin changed from 298°C to 285°C, maintaining a relatively high value. For the resins containing 0.6 wt% of treated MWCNTs, the plane strain critical stress intensity factor and plane strain critical strain energy release rate in the system were determined to be 1.39 Pa·m0.5 and 364 J m−2, respectively, and the fracture toughness is increased by 45.7 and 76.0%, respectively. Furthermore, the modified resin system exhibits excellent toughness and thermal properties. Therefore, the modified resin may be suitable for future applications involving high performance composites and adhesives.


2020 ◽  
Vol 31 (11) ◽  
pp. 8536-8545
Author(s):  
Zhiguo Li ◽  
Yufei Chen ◽  
Yulong Liu ◽  
Chengjun Teng ◽  
Simin Chen ◽  
...  

2012 ◽  
Vol 532-533 ◽  
pp. 361-364
Author(s):  
Zeng Ping Zhang ◽  
Jian Zhong Pei ◽  
Chang Qing Fang ◽  
Shuan Fa Chen

Different contents of epoxy functionalized polyhedral oligomeric silsesquioxane (POSS-Ep) were used to modify cyanate ester resin. The dynamic mechanical properties of the hybrids were studied dynamic mechanical analysis (DMA). DMA results showed that POSS-Ep tended to decrease E’ of the hybrids at the glassy state but to increase E’ of the hybrids at the rubbery state.


2011 ◽  
Vol 217-218 ◽  
pp. 280-285
Author(s):  
Zeng Ping Zhang ◽  
Jian Zhong Pei ◽  
Shuan Fa Chen ◽  
Yong Wen ◽  
Hong Zhao Du

A kind of nonfunctional oligomeric silsesquioxane (SSQ), methylsilsesquioxane (Me-SSQ), was used to modify cyanate ester resin (CE) in this paper. First, Me-SSQ was synthesized by the hydrolysis and condensation of methyltriethoxysilane. Then a series of Me-SSQ/CE hybrids containing 0wt%, 1wt%, 5wt%, 10wt% and 20wt% of Me-SSQ were prepared. Curing reactivity of the hybrid materials was studied by differential scanning calorimetry (DSC). Mechanical properties of the Me-SSQ/CE hybrids were studied systematically. Impact strength of the Me-SSQ/CE hybrids reaches its maximum value when Me-SSQ content is 5wt%. However, the flexural strength reaches the maximum value when Me-SSQ content is 1wt%. SEM images accord well with the mechanical properties. It is concluded that appropriate amount of Me-SSQ is favorable to improve the mechanical properties of Me-SSQ/CE hybrid materials.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Sign in / Sign up

Export Citation Format

Share Document