scholarly journals Evaluating the Prospects of Ti-Base Lattice Infiltrated with Biodegradable Zn–2%Fe Alloy as a Structural Material for Osseointegrated Implants—In Vitro Study

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4682
Author(s):  
Noa Gabay ◽  
Tomer Ron ◽  
Razi Vago ◽  
Amnon Shirizly ◽  
Eli Aghion

The term “osseointegrated implants” mainly relates to structural systems that contain open spaces, which enable osteoblasts and connecting tissue to migrate during natural bone growth. Consequently, the coherency and bonding strength between the implant and natural bone can be significantly increased, for example in operations related to dental and orthopedic applications. The present study aims to evaluate the prospects of a Ti–6Al–4V lattice, produced by selective laser melting (SLM) and infiltrated with biodegradable Zn2%Fe alloy, as an OI–TiZn system implant in in vitro conditions. This combined material structure is designated by this study as an osseointegrated implant (OI–TiZn) system. The microstructure of the tested alloys was examined both optically and using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The mechanical properties were assessed in terms of compression strength, as is commonly acceptable in cases of lattice-based structures. The corrosion performance was evaluated by immersion tests and electrochemical analysis in terms of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), all in simulated physiological environments in the form of phosphate buffered saline (PBS) solution. The cytotoxicity was evaluated in terms of indirect cell viability. The results obtained demonstrate the adequate performance of the OI–TiZn system as a non-cytotoxic structural material that can maintain its mechanical integrity under compression, while presenting acceptable corrosion rate degradation.

2006 ◽  
Vol 34 (05) ◽  
pp. 873-886 ◽  
Author(s):  
Chun-Hsu Yao ◽  
Bai-Shuan Liu ◽  
Chau-Guey Liu ◽  
Yueh-Sheng Chen

The purpose of this investigation was to prepare and evaluate the feasibility and biocompatibility of a new composite as a large defect bone substitute. The new GTGG was mainly composed of tricalcium phosphate ceramic particles and glutaraldehyde crosslinked gelatin in which Gui-Lu-Jiao was added (a mixture of Cervi Colla Cornus and Colla Plastri Testudinis). In the in vitro study, rat's calvaria osteoblasts were used to study bone characteristics upon exposure to different concentrations of the Gui-Lu-Jiao solution. In the in vivo study, GTGG composites were implanted into the defects of calvarial bones in mature New Zealand rabbits to test their osteogenerative characteristics. As a result, we found that Gui-Lu-Jiao added to the culture could promote the proliferation of osteoblasts. In addition, GTGG could induce a large amount of new bone growth in the rabbit's calvarial bone defect. Therefore, the GTGG composite might be a potential bone substitute.


2021 ◽  
Vol 13 (4) ◽  
pp. 1317-1325
Author(s):  
Latha Rathinam ◽  
S. P. Sevarkodiyone ◽  
J. Pandiarajan

Emerging nanobiotechnology has provided innovative techniques to synthesize nanoparticles through biological methods to explore the potentialities of biological sources like phytoextracts, microbes, animal secretions and excretion. This research studies the potential of vermiwash to synthesize the silver and gold nanoparticles and evaluate its in vitro effect of antimicrobial   and antidiabetic activities. The characterization of the nanoparticles was analyzed through various techniques. Ultraviolet (UV)-Visible spectroscopy showed the maximum absorption spectrum at 413 nm for silver and 541 nm for gold nanoparticles. Fourier transform infrared spectroscopy (FTIR) revealed the reducing agent involved in nanoparticles synthesis. Scanning electron microscope (SEM) images revealed the size of the silver and gold nanoparticles as 24 nm and 50 nm, respectively. Energy dispersive X-ray (EDAX) analysis revealed the elemental composition of the synthesized nanoparticles. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the nanoparticles that displayed the preferential orientation of the crystals toward the (111) plane.  Antimicrobial activity was assessed using the resazurin assay method.  A minimum inhibitory concentration (MIC) of less than 7.8 µg was observed in Staphylococcus aureus and Klebsiella pneumoniae. In the antifungal activity, MIC at 250 µg was noted in Mucor sp. and Candida albicans. Antidiabetic activity was assessed by α-amylase and α-glucosidase inhibitory assay. IC50 of α-amylase and α-glucosidase activity of the silver nanoparticles was noted as 218 and 221 µg/mL, respectively. IC 50 value for the enzymatic assay dose-dependently confirmed the effect. Conclusively biosynthesized nanoparticles from vermiwash showed potential efficiency of antibacterial, antifungal and antidiabetic activities.


Author(s):  
Chirayu. C ◽  
Nagaraja T.S ◽  
Vitthal K Vijapure

The purpose of this research work was to develop and evaluate transdermal patch of Prednisolone, using Xanthan gum, Guar gum and Polyacrylamide in different ratios prepared by the Glass Substrate Technique. The physicochemical compatibility of the polymers and the drug was evaluated by FTIR. The results suggested that no physicochemical incompatibility between the polymer and the drug. Drug free films were formulated and evaluated characteristics like flexibility and smoothness. Further drug loaded films were formulated and evaluated for thickness, weight uniformity, drug content, folding endurance and drug release. The XRD analysis confirmed the amorphous dispersion of the drug in the formulation. SEM analysis showed surface morphology of prepared formulations. Drug diffusion through cellophane membrane was carried out using Franz diffusion cell by in-vitro study. The film prepared with formulation PDS 9 showed maximum diffusion release at the end of 24 hours. It is shown that drug release follows order and non Fikinian mechanism of release diffusion. The PDS 9 formulation was found to be stable with respect to drug content as well as physical changes at 40 ºC and 75 % RH. Keywords: Transdermal drug delivery, Prednisolone, Xanthan gum, Guar gum, Polyacrylamide.


2019 ◽  
Vol 8 (6) ◽  
pp. 435-440
Author(s):  
Asmaa Marda ◽  
Khadija Mouflih ◽  
Abdelkebir Bellaouchou ◽  
Abdallah Guenbour ◽  
Asmae Elmansari ◽  
...  

This study aimed to compare the resistance of dental alloys to corrosion in a solution containing oral bacteria named Streptococcus mutans (S.mutans). The electrochemical behavior of Nickel-Titanium (NiTi) was investigated in sterile Fusayama artificial saliva (AS) with the enrichment medium tryptic soy broth (TSB) in solution 1 and (AS) with (TSB) and bacteria in solution 2. The electrochemical procedures selected for this work were open circuit potentials (OCP), Potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The NiTi surface was examined using optical microscopy.      After 24 hours of immersion in artificial saliva, the results have shown that NiTi revealed high corrosion reactivity in the presence of S. mutans and present pitting corrosion on the surface.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hye Kyung Kim ◽  
Myung-Gyou Kim ◽  
Kang-Hyun Leem

The aim of this study was to compare the effectiveness of velvet antler (VA) from different sections for promoting longitudinal bone growth in growing rats. VA was divided into upper (VAU), middle (VAM), and basal sections (VAB). An in vivo study was performed to examine the effect on longitudinal bone growth in adolescent rats. In addition, in vitro osteogenic activities were examined using osteoblastic MG-63 cells. VA promoted longitudinal bone growth and height of the growth plate in adolescent rats. Bone morphogenetic protein-2 (BMP-2) in growth plate of VA group was highly expressed compared with control. The anabolic effect of VA on bone was further supported by in vitro study. VA enhanced the proliferation, differentiation, and mineralization of MG-63 cells. The mRNA expressions of osteogenic genes such as collagen, alkaline phosphatase, and osteocalcin were increased by VA treatment. These effects of in vivo and in vitro study were decreased from upper to basal sections of VA. In conclusion, VA treatment promotes longitudinal bone growth in growing rats through enhanced BMP-2 expression, osteogenic activities, and bone matrix gene expressions. In addition, present study provides evidence for the regional differences in the effectiveness of velvet antler for longitudinal bone growth.


2015 ◽  
Vol 820 ◽  
pp. 293-296
Author(s):  
Julio Cesar Colpo ◽  
Caroline Pigatto ◽  
Camila F. Escobar ◽  
Tiago Delbrücke ◽  
Jose R. Jurado ◽  
...  

Tricalcium phosphate cement (α-TCP) can be used in various fields of health, including as drug delivery systems. The application of a biomaterial based on α-TCP could enable both the constant drug delivery as support and shape damaged muscleskeletics tissues until which can be regenerated by the organism itself, replacing the biomaterial, while maintaining stable levels of the drug in the organism. The aim of this study was to evaluate the release of gentamicin sulfate using the technique of electrochemical impedance spectroscopy in drug delivery systems of α-TCP. The results obtained in vitro study validated the proposed methodology for assessment of controlled drug delivery systems on the basis of α-TCP.


2017 ◽  
Vol 51 (6) ◽  
pp. 554-567 ◽  
Author(s):  
Lívia P. Comar ◽  
Beatriz M. Souza ◽  
Luana P. Al-Ahj ◽  
Jessica Martins ◽  
Larissa T. Grizzo ◽  
...  

This in vitro study aimed to evaluate the action of TiF4 on sound and carious bovine and human enamel. Sound (S) and pre-demineralised (DE) bovine and human (primary and permanent) enamel samples were treated with TiF4 (pH 1.0) or NaF varnishes (pH 5.0), containing 0.95, 1.95, or 2.45% F for 12 h. The enamel surfaces were analysed using SEM-EDX (scanning electron microscopy/energy-dispersive X-ray spectroscopy) (n = 10, 5 S and 5 DE) and KOH-soluble fluoride was quantified (n = 20, 10 S and 10 DE). Hydroxyapatite powder produced by precipitation method was treated with the corresponding fluoride solutions for 1 min (n = 2). The formed compounds were detected using X-ray diffraction (XRD). All TiF4 varnishes produced a coating layer rich in Ti and F on all types of enamel surface, with micro-cracks in its extension. TiF4 (1.95 and 2.45% F) provided higher fluoride deposition than NaF, especially for bovine enamel (p < 0.0001). It also induced a higher fluoride deposition on DE samples compared to S samples (p < 0.0001), except for primary enamel. The Ti content was higher for bovine and human primary enamel than human permanent enamel, with some differences between S and DE. The XRD analysis showed that TiF4 induced the formation of new compounds such as CaF2, TiO2, and Ti(HPO4)2·H2O. In conclusion, TiF4 (>0.95% F) interacts better, when compared to NaF, with bovine and human primary enamel than with human permanent enamel. TiF4 provoked higher F deposition compared to NaF. Carious enamel showed higher F uptake than sound enamel by TiF4 application, while Ti uptake was dependent on the enamel condition and origin.


Sign in / Sign up

Export Citation Format

Share Document